SYLLABUS

[image: image25.png]Wy User Controls
Data

Components
Widons Forms

X Poner

8l Button

P Chedeox
Checkedtispox
[cobordisog
28 combosox

Clboerd Ring
General

B8 server Explorer 32 Toobox

.NET Framework: Introduction, Objectives, Structure, Scope and Access Levels

Object-Oriented Programming: Introduction to Object-Oriented Programming, Objectives, Basic concept

Creating the User Interface: User Interface Design Principles, Objectives, Composition, Integrated Development Environment, and Server Explorer

Types and Members: Introduction to Types and Members, .NET Data Types, Data Type Functionality

Operators: Introduction to Operators, Type of Operators

Using Constants, Enums, Arrays, and Collections: Using Constants, Enums, Arrays, and Collections

Flow-Control Statements: Flow-Control Statements; If …then, else end if, For …next, Which… end select

Functions: Functions; System define functions, User define functions

Using Controls and Components: Using Controls and Components, Add a control to your application, Edit Control, Interacting with the Mouse

Validating User Input: Validating User Input, Field-Level Validation, Validating Characters, Handling the Focus

Menus: Menus, Creating Menus During Design, Shortcut Keys, Context Menus,

Cloning Menus

Interfaces and Exception handling: Interfaces and Exception handling, Abstract classes
Advance .net Component: Advance .net Component, COM, Accessing a Web Service

Overview of ADO .NET: Overview of ADO .NET

Overview of Structured Query Language: Overview of Structured Query Language; Select, INSERT, UPDATE, DELETE

Table Of Contents

Unit 1 .NET Framework

1. Introduction Of The .NET Framework

2. Objectives Of The .NET Framework

3. Languages And The .NET Framework

4. The Structure Of A .NET Application

5. The .NET Base Class Library

6. Using Classes And Structures

7. Scope And Access Levels

8. Summary

Unit 2 Object-Oriented Programming

1 Introduction To Object-Oriented Programming

2 Objectives

3 Basic Concept Of Object-Oriented Programming
4 Objects, Members, And Abstraction

5 Summary

Unit 3
 Creating the User Interface

1. User Interface Design Principles

2. Objectives Of User Interface

3. Composition

4. Adding Forms To Your Project
5. Using Forms
6. Using The Main Menu
7. The Integrated Development Environment: The Studio Windows
8. Studio Windows: The Server Explorer

9. Summary

Unit 4 Types and Members

1. Introduction

2. Objectives

3. The .NET Data Types

4. Using Data Type Functionality

5. Summary

Unit 5 Operators

1. Introduction

2. Type Of Operators

2.1. Assignment Operator

2.2. Relational Operator

2.3. Comparison Operator

2.4. Arithmetic Operator

3. Summary

Unit 6 Using Constants, Enums, Arrays, and Collections

1. Introduction

2. Objective

3. Constants And Enumerations

4. Arrays

5. Summary

Unit 7 Flow-Control Statements

1. Introduction

2. If …Then, Else End If

3. For …Next

4. Select Case End Select

5. Which… End Select

6. Do…Loop

7. Do Which… Loop

8. Do Until… Loop

9. Summary

Unit 8 Functions

1. System define functions

a. String

b. Number

c. Date

2. User define functions

3. Summary

Unit 9 Using Controls and Components

1. Introduction of user control

2. Objectives

3. Working with Controls

4. Add a control to your application

5. Edit Control

6. Setting the Control Tab Order

7. Interacting with the Mouse
8. Summary

Unit 10 Validating User Input

1. Introduction

2. Objectives

3. Field-Level Validation

4. Using Events in Field-Level Validation

5. Validating Characters

6. Handling the Focus

7. Summary

Unit 11 Menus

1. Introduction

2. Objectives

3. Creating Menus During Design

4. Shortcut Keys

5. Using Menu Item Events

6. Creating Context Menus

7. Displaying Check Marks on Menu Items

8. Displaying Radio Buttons on Menu Items

9. Cloning Menus

10. Merging Menus at Run Time

11. Adding Menu Items at Run Time

12. Summary

Unit 12 Interfaces and Exception handling

1. Interfaces

2. Abstract classes

3. Exception handling

i. System define

ii. User define

4. Summary

Unit 13 Advance .net Component

1. Introduction of component
2. COM
3. Accessing a Web Service

4. Summary
Unit 14 Overview of ADO .NET

1. Data Base

2. Introduction of Ado.net

3. Summary

Unit 15 Overview of Structured Query Language

1. Introduction

· Select

· Insert

· Update

· Delete

2. Summary

Unit 16 Accessing Data

1. Introduction
2. Connecting to database.
3.
Summary
Unit 1

.NET Framework

1. Introduction of the .NET Framework

2. Objectives of the .NET Framework

3. Languages and the .NET Framework

4. The Structure of a .NET Application

5. The .NET Base Class Library

6. Using Classes and Structures

7. Scope and Access Levels

8. Summary

1. Introduction of the .NET Framework
The .NET Framework is a managed type-safe environment for application development and execution. The .NET Framework manages all aspects of your program’s execution. It allocates memory for the storage of data and instructions, grants or denies the appropriate permissions to your application, initiates and manages application execution, and manages the reallocation of memory from resources that are no longer needed. The .NET Framework consists of two main components: the common language runtime and the .NET Framework class library.

The common language runtime can be thought of as the environment that manages code execution. It provides core services, such as code compilation, memory allocation, thread management, and garbage collection. Through the common type system (CTS), it enforces strict type-safety and ensures that code is executed in a safe environment by also enforcing code access security.

The .NET Framework class library provides a collection of useful and reusable types that are designed to integrate with the common language runtime. The types provided by the .NET Framework are object-oriented and fully extensible, and they allow you to seamlessly integrate your applications with the .NET Framework.

2. Objectives of the .NET Framework
· Describe the elements of the .NET Framework

· Describe the parts of an assembly and identify what is contained in each part

· Describe how a .NET application is compiled and executed

3. Languages and the .NET Framework

The .NET Framework is designed for cross-language compatibility, which means, simply, that .NET components can interact with each other no matter what supported language they were written in originally. So, an application written in Microsoft Visual Basic .NET might reference a dynamic-link library (DLL) file written in Microsoft Visual C#, which in turn might access a resource written in managed Microsoft Visual C++ or any other .NET language. This language interoperability extends to full object-oriented inheritance.

When a .NET application is compiled, it is converted from the language in which it was written (Visual Basic .NET, C#, or any other .NET-compliant language) to Microsoft Intermediate Language (MSIL or IL). MSIL is a low-level language that the common language runtime can read and understand. Because all .NET executables and DLLs exist as MSIL, they can freely interoperate. The Common Language Specification (CLS) defines the minimum standards to which .NET language compilers must conform. Thus, the CLS ensures that any source code successfully compiled by a .NET compiler can interoperate with the .NET Framework.

Visual Studio .NET ships with languages such as Visual Basic .NET, Visual C#, and Visual C++ with managed extensions, as well as the JScript scripting language. You can also write managed code for the .NET Framework in other languages. Third-party tools and compilers exist for FORTRAN, COBOL, Perl, and a host of other languages. All of these languages share the same cross-language compatibility and inheritability. Thus, you can write code for the .NET Framework in the language of your choice, and it will be able to interact with code written for the .NET Framework in any other language

4. The Structure of a .NET Application
To understand how the common language runtime manages code execution, you must examine the structure of a .NET application. The primary unit of a .NET application is the assembly. An assembly is a self-describing collection of code, resources, and metadata. The assembly manifest contains information about what is contained within the assembly. The assembly manifest provides:

· Identity information, such as the assembly’s name and version number

· A list of all types exposed by the assembly

· A list of other assemblies required by the assembly

· A list of code access security instructions, including permissions required by the assembly and permissions to be denied the assembly

Each assembly has one and only one assembly manifest, and it contains all the description information for the assembly. However, the assembly manifest can be contained in its own file or within one of the assembly’s modules.

An assembly contains one or more modules. A module contains the code that makes up your application or library, and it contains metadata that describes that code. When you compile a project into an assembly, your code is converted from high-level code to IL. Because all managed code is first converted to IL code, applications written in different languages can easily interact.

5. The .NET Base Class Library
The .NET base class library is a collection of object-oriented types and interfaces that provide object models and services for many of the complex programming tasks you will face. Most of the types presented by the .NET base class library are fully extensible, allowing you to build types that incorporate your own functionality into your managed code.

The .NET Framework base class library contains the base classes that provide many of the services and objects you need when writing your applications. The class library is organized into namespaces. A namespace is a logical grouping of types that perform related functions. For example, the System.Windows.Forms namespace contains all the types that make up Windows forms and the controls used in those forms.

Namespaces are logical groupings of related classes. The namespaces in the .NET base class library are organized hierarchically. The root of the .NET Framework is the System namespace. Other namespaces can be accessed with the period operator. A typical namespace construction appears as follows:

System

System.Data

System.Data.SQLClient

The first example refers to the System namespace. The second refers to the System.Data namespace. The third example refers to the System.Data.SQLClient namespace.

	. Representative .NET Namespaces

	Namespace
	Description

	System
	This namespace is the root for many of the low-level types required by the .NET Framework. It is the root for primitive data types as well, and it is the root for all the other namespaces in the .NET base class library.

	System.Collections
	This namespace contains classes that represent a variety of different container types, such as ArrayList, SortedList, Queue, and Stack. You also can find abstract classes, such as CollectionBase, which are useful for implementing your own collection functionality.

	System.ComponentModel
	This namespace contains classes involved in component creation and containment, such as attributes, type converters, and license providers.

	System.Data
	This namespace contains classes required for database access and manipulations, as well as additional namespaces used for data access.

	System.Data.Common
	This namespace contains a set of classes that are shared by the .NET managed data providers.

	System.Data.OleDb
	This namespace contains classes that make up the managed data provider for OLE DB data access.

	System.Data.SQLClient
	This namespace contains classes that are optimized for interacting with Microsoft SQL Server.

	System.Drawing
	This namespace exposes GDI+ functionality and provides classes that facilitate graphics rendering.

	System.IO
	In this namespace, you will find types for handling file system I/O.

	System.Math
	This namespace is home to common mathematics functions such as extracting roots and trigonometry.

	System.Reflection
	This namespace provides support for obtaining information and dynamic creation of types at runtime.

	System.Security
	This namespace is home to types dealing with permissions, cryptography, and code access security.

	System.Threading
	This namespace contains classes that facilitate the implementation of multithreaded applications.

	System.Windows.Forms
	This namespace contains types involved in creating standard Windows applications. Classes that represent forms and controls reside here as well.

The namespace names are self-descriptive by design. Straightforward names make the .NET Framework easy to use. Reference Types and Value Types

Types in the .NET Framework come in two varieties: value types and reference types. The primary difference between value types and reference types has to do with the way variable data is accessed. To understand this difference, a little background on memory dynamics is required.

Application data memory is divided into two primary components, the stack and the heap. The stack is an area of memory reserved by the application to run the program. The stack is analogous to a stack of dinner plates. Plates are placed on the stack one on top of another. When a plate is removed from the stack, it is always the last one to have been placed on top that is removed first. So it is with program variables. When a function is called, all the variables used by the function are pushed onto the stack. If that function calls additional functions, it pushes additional variables onto the stack. When the most recently called function terminates, all of its variables go out of scope (meaning that they are no longer available to the application) and are popped off the stack. Memory consumed by those variables is then freed up, and program execution continues.

The heap, on the other hand, is a separate area of memory reserved for the creation of reusable objects. The common language runtime manages allocation of heap memory for objects and controls the reclamation of memory from unused objects through garbage collection.

6. Using Classes and Structures
You have seen how the .NET Framework base class library provides a plethora of standard types to help you in the development of your applications. You can also create user-defined types that implement custom behaviors. Classes and structures represent the two principal user-defined types

Classes are templates for objects. They describe the kind and amount of data that an object will contain, but they do not represent any particular instance of an object. A real-world example of a class might be “Car”—the abstract idea of what a car is. You know that a car has an engine, four wheels, a body color, an individual fuel efficiency, and a dozen other properties. Although the Car class would describe all these properties, as well as have descriptions of actions that the car might perform (roll forward, turn on windshield wipers, and so on), the class would not represent any particular car. Your car, on the other hand, is an object. It has a specific color, a specific fuel efficiency, a specific engine, and four specific wheels. A different car might have different values for each of these properties, but both would be recognizable as being an instance of the Car class.

Members

Classes describe the properties and behaviors of the objects they represent through members. Members are methods, fields, properties, and events that belong to a particular class. Fields and properties represent the data about an object—the color of the car, its fuel efficiency, and whether it has an automatic or manual transmission, for example. A method represents something the object can do, such as move forward or turn on headlights. An event represents something interesting that happens to the object, such as overheating or crashing.

Creating Classes

You create a new class by using the Class (Visual Basic .NET) keyword. For example:

Public Class Widget

‘Class member implementation goes here

End Class

In this example, you use the Class (class) keyword to create a user-defined class. Widget is the name of the class, and the Public (public) keyword specifies the access level. In Visual Basic .NET, a class comprises everything between the Class keyword and the End Class keyword.

Nested Types

Types can contain other types. Types within types are called nested types. Using classes as an example, a nested class usually represents an object that the parent class might need to create and manipulate, but which an external object would never need to create independently.

Public Class Widget

 ' Widget Class code goes here

 Private Class Widgurt

 ' Widgurt class code goes here

 End Class

End Class

Instantiating User-Defined Types

You declare and instantiate a user-defined type the same way that you declare and instantiate a .NET Framework type. For both value types (structures) and reference types (classes), you need to declare the variable as a variable of that type and then create an instance of it with the New (new) keyword. Examples are as follows:

Public Class Demo

 Public Structure ValueDemo

 Public X As Integer

 End Structure

 Public Class RefDemo

 Public Y As Integer

 End Class

 Public Sub InstantiateTypes()

 ' This line declares a ValueDemo variable

 Dim DemoStructure As ValueDemo

 ' This line creates an instance of ValueDemo on the stack

 DemoStructure = New ValueDemo()

 ' The variable is ready to receive data.

 DemoStructure.X = 15

 ' This line declares a RefDemo variable, but doesn't

 ' create an instance of the class

 Dim DemoClass As RefDemo

 ' This line actually creates the object

 DemoClass = New RefDemo()

 ' And you can now assign value to its members

 DemoClass.Y = 15

 End Sub

End Class

Classes vs. Structures

On the surface, classes and structures appear to be very similar. Both can contain members such as fields and methods, both require a constructor to create a new instance of themselves, and like all types in the .NET Framework, both inherit from Object. The key difference between classes and structures is that classes are reference types and structures are value types. On a low level, this means that the instance data for classes is allocated on the heap, whereas the instance data for structures is allocated on the stack. Access to the stack is designed to be light and fast, but storage of large amounts of data on the stack can impede overall application performance.

In practical terms, that structures are best used for smaller, lightweight objects that contain relatively little instance data or for objects that do not persist for long. Classes are best used for larger objects that contain more instance data and are expected to exist in memory for extended periods.

7. Scope and Access Levels
Access levels define how types are instantiated and how members are accessed. You use access levels to encapsulate data and methods in your types, and to expose functionality to outside objects. In this lesson, you will learn how access modifiers control code access and how to use them in your types.

Access modifiers are keywords such as Public (public), Private (private), and Friend (internal) that precede a variable or type declaration. The keyword that is used controls the level of access the member is allowed. When an access modifier precedes a member declaration, it affects the scope of that member, meaning it controls what code can access it. When a modifier precedes a type declaration, it determines both the scope of its members and how that type is instanced.

Member Access Modifiers

Type members can have modifiers to control their scope. Table 1.2 summarizes the different access levels.

	Table 1-2. Access Levels

	Access Modifier
	Effect on Members

	Public
	Can be accessed from anywhere.

	Private
	Can be accessed only by members within the type that defines it.

	Friend
	Can be accessed from all types within the assembly, but not from outside the assembly.

	Protected
	Can be accessed only by members within the type that defines it or types that inherit from that type.

	Protected Friend
	Can be accessed from all types within the assembly or from types inheriting from the owning type.

Any member with the Public (public) modifier is visible to all code outside the class. Thus, other objects can access and modify public fields and can call public methods. Conversely, Private (private) methods are visible only inside the type to which they belong and cannot be accessed from the outside. A third access modifier, Friend (internal), indicates that members can be accessed by other types in the same assembly but cannot be accessed from types outside the assembly. The Protected (protected) modifier allows access from within the type to which the member belongs and to any types that inherit that type. The Protected Friend (protected internal) level provides the union of Protected (protected) and Friend (internal) access. For member variables, the access modifier can replace the Dim statement.

The following example demonstrates how to use the access modifiers and illustrates how they control access:

Public Class aClass

 ' This field can be accessed unconditionally by external

 ' code

 Public anInteger As Integer

 ' This method can be called by members of this class and

 ' assembly, but not by external code

 Friend Sub myMethod()

 End Sub

 ' This field can only be accessed by members of this class

 Private aString As String

 ' This method may be called by members of this class and any

 ' inheriting classes

 Protected Function Return1() As Integer

 Return 1

 End Function

 ' This field may be accessed by members of the assembly or

 ' inheriting classes

 Protected Friend aLong As Long

End Class

Type Access Modifiers

Structures and classes can also have access modifiers. Access modifiers control how a type can be instantiated and are similar to access modifiers for members. A Public (public) class can be instantiated by any object in the application. A Friend (internal) class can be created by other members of the assembly but cannot be created by objects external to the assembly. The Private (private) and Protected (protected) modifiers can be used only on nested types. A private class can be created only by objects of its own type or by types in which it is nested. Nested types also can be Protected (protected) or Protected Friend (protected internal), which allows classes inheriting the parent class to have access to them. Protected Friend (protected internal) classes are also visible to other members of the namespace. If no access modifier is specified for a class or a structure, it is considered Public (public).

Access Modifiers for Nested Types

In general, a nested type is a type that is used exclusively by the type that contains it. Thus, it is usually a good practice to assign the Private (private) access modifier to a nested type. Under rare circumstances, you might want to create a nested type that can be created by other types and assign it a different access modifier. Although you can assign any access modifier to a nested type, the behavior will never be greater than the access modifier of the type that contains it. Consider the following example:

Friend Class ParentClass

 Public Class NestedClass

 End Class

End Class

In this example, the nested class is declared Public (public) but is contained within a class that is marked Friend (internal). Although the nested class is public, it will not be visible to any classes outside the assembly by virtue of the parent class being marked Friend (internal). Thus, the nested class has a practical access level of Friend (internal).

Shared (static) Members

Regular members are unique to each object instance as shown in the following pseudocode:

Dim Object1 as New DemoClass()

Dim Object2 as New DemoClass()

Object1.MyField = 15

Object2.MyField = 20

The MyField field holds a different value, depending on which instance of the class is referenced. It is also possible to have members that are common to all instances of a class. These members are called Shared (static) members. Only one instance of a Shared or static member can exist, no matter how many instances of a particular type have been created.You can create a Shared (static) field by using the Shared (Visual Basic .NET). For example:

Public Class Demo

 Public Shared MyField As Integer

End Class

Even though multiple instances of the Demo class might be instantiated, there will be only one copy of the MyField field. Note that the Shared (static) keyword is not an access modifier; rather, it specifies the member’s shared nature. Shared members can still be Public (public), Private (private), Friend (internal), and so on.

Methods can be shared as well as fields. Whereas regular methods belong to instances of types, shared methods belong to the type itself. Because shared methods belong to the type itself, they cannot access instance data from any objects. They can only utilize shared variables, variables declared within the method, or parameters passed into the method.

Accessing Shared Members

Because Shared members belong to the type but not to object instances of a type, they should be accessed using the class name rather than the instance name. Although Visual Basic .NET allows you to access Shared members through the object, there is still only one instance of the Shared members. Visual C# is stricter in this regard and does not allow you to access static members through an object instance. An example is shown in the following code sample:

Dim Object1 as New Demo()

' This is incorrect syntax. You should not access shared

' members through the object name, though it will not cause an

' error.

Object1.MyField = 15

' This syntax is correct-accessing the field through the class

' instead of the object.

Demo.MyField = 15

Because Shared members belong to the type instead of any one instance of a type, it is not necessary to instantiate a type before accessing Shared members. Thus, you can call shared methods or retrieve shared fields before an instance of a type exists.

9. Summary
· The .NET Framework is a foundation for software development. The .NET Framework consists of the common language runtime, which provides many of the core services required for program execution, and the .NET base class library, which exposes a set of pre-developed classes to facilitate program development. The CLS defines a minimum set of standards that all languages using the .NET Framework must support, and the CTS ensures type compatibility between components developed in different languages.

· The primary unit of a .NET application is the assembly, which includes an assembly manifest. The assembly manifest describes the assembly and one or more modules, and the modules contain the source code for the application.

· A .NET executable is stored as an IL file. When loaded, the assembly is checked against the security policy of the local system. If it is allowed to run, the first assembly is loaded into memory and JIT compiled into native binary code, where it is stored for the remainder of the program’s execution.

· The .NET Framework is a foundation for software development. The .NET Framework consists of the common language runtime, which provides many of the core services required for program execution, and the .NET base class library, which exposes a set of pre-developed classes to facilitate program development. The CLS defines a minimum set of standards that all languages using the .NET Framework must support, and the CTS ensures type compatibility between components developed in different languages.

· The primary unit of a .NET application is the assembly, which includes an assembly manifest. The assembly manifest describes the assembly and one or more modules, and the modules contain the source code for the application.

· A .NET executable is stored as an IL file. When loaded, the assembly is checked against the security policy of the local system. If it is allowed to run, the first assembly is loaded into memory and JIT compiled into native binary code, where it is stored for the remainder of the program’s execution.

· User-defined types include classes and structures. Both can have members, which are fields, properties, methods, or events. Classes are reference types, and structures are value types.

Unit 2

Object-Oriented Programming

1. Introduction to Object-Oriented Programming

2. Objectives

3. Basic concept of Object-oriented programming
4. Objects, Members, and Abstraction

5. Summary

1. Introduction to Object-Oriented Programming
Programming in the .NET Framework environment is done with objects. Objects are programmatic constructs that represent packages of related data and functionality. Objects are self-contained and expose specific functionality to the rest of the application environment without detailing the inner workings of the object itself. Objects are created from a template called a class. The .NET base class library provides a set of classes from which you can create objects in your applications. You also can use the Microsoft Visual Studio programming environment to create your own classes. This lesson introduces you to the concepts associated with object-oriented programming.

A programming language is a tool used by programmers in order to specifically outline a series of steps that a computer is to take in a certain instance. A high-level programming language allows a programmer to express ideas on an abstract level, and forces the compiler to worry about the low-level implementation details. This allows for faster development of applications, since applications are easier to write. There are even fourth generation languages emerging as viable programming languages. Recall that machine code is considered first generation, assembly languages are second generation, compiled languages are third generation. Fourth generation languages are actually code-generating environments, such as Microsoft's Visual Basic. These fourth generation languages allow programmers to express their ideas visually, and the environment then writes the code to implement these ideas.

· OBJECT-ORIENED PROGRAMMING PARADIGNM

The major motivating factor in the invention of object-oriented approach is to remove some of the flaws encountered in the procedural approach. OOP treats data as a critical element in the program development and does not allow it to flow freely around the system. It ties data more closely to the functions that operate on it, and protects it from accidental modification from outside functions. OOP allows decomposition of a problem into a number of entities called object and then builds data and functions around these objects. The organization of data and functions in object-oriented programs is shown in fig. The data of an object can access the functions of other objects.

2. Objectives
· Describe the members of an object

· Describe the difference between an object and a class

· Explain what is meant by “object model”

· Explain what is meant by “abstraction,” “encapsulation,” and “polymorphism”

3. Basic concept of Object-oriented programming
It is necessary to understand some of the concepts used extensively in object-oriented programming. These include:

· Objects: Objects are the basic run-time entities in an object-oriented system. They may represent a person, a place, a bank account, a table of data or any item that the program has to handle. They may also represent user-defined data such as vectors, time and lists. Programming problem is analyzed in term of objects and the nature of communication between them. Program objects should be chosen such that they match closely with real-world objects. Objects take up space in memory and have an associated address like a record in Pascal, or a structure in .

When a program is executed, the objects interact by sending messages to one another. Foe example, if” customer” and “account” are two objects in a program, then the customer object may send a message to the account object requesting for the bank balance. Ach object contains data and code to manipulate the data. Objects can interact without having to know details of each other’s data or code. It is sufficient to know the type of message accepted, and the type of response return by the objects. Although different authors represent them differently, fig. below shows two notations that are popularly used in object-oriented analysis and design.

 SHAPE * MERGEFORMAT

· Classes: We just mentioned that objects contained that objects contain data, and code to manipulate that data. The entire set of data and code of an object can be made a user-defined data type with the help of a class. In fact, objects are variables of that class type. Once a class has been defined , we can create any number of objects belonging to that class. Each object is associated with the data of type class with which they are created. A class is thus a collection of objects of similar type. Foe example, mango, apple and orange are member of the class fruit. Classes are user-defined data types and behave like the built-in types of a programming language. The syntax is used to create an object is no different than the syntax used to create an integer object in C. If fruit has been defined as a class, then the statement: Fruit mango; Will create an object mango belonging to the class fruit.

· Encapsulation: The wrapping of data and functions into a single unit (called class) is known as encapsulation. Data encapsulation is the most striking feature of a class. The data is not accessible to the outside world, and those functions, which are wrapped in the class, can access it. These function provide the interface between the object’s data and the program. This insulation of the data from direct access by the program is called data hiding .

· Data Abstraction: Abstraction refers to the act of representing essential features with out including the background details or explanations. Classes use the concept of abstraction and are defined as a list of abstract attributes such as size, weight and cost and functions to operate on these attributes. Sometimes, these are called data members because they hold information. The functions that operate on these data are called methods or member functions.

· Inheritance: Inheritance is the process by which objects of one class acquire the properties of objects of another class. It supports the concept of hierarchical classification. For example, the bird ‘robin’ is a part of the class ‘flying bird’ which is again a part of the class ‘bird’. The principle behind this sort of division is that each derived class shares common characteristics with the class from which it is derived as illustrated in figure.

In OOP, the concept of inheritance provides the idea of reusability. This means that we can add additional features to an existing class without modifying it. This is possible by deriving a new class from the existing one. The new class will have the combined features of both of the classes. The real appeal and the power of the inheritance mechanism is that it a allows the programmer to reuse a class that is almost, but not exactly, what he wants, and to tailor the class in such a way that it does not introduce any

 SHAPE * MERGEFORMAT

Undesirable side-effects into the rest of the classes.

4. Objects, Members, and Abstraction
An object is a programmatic construct that represents something. In the real world, objects are cars, bicycles, laptop computers, and so on. Each of these items exposes specific functionality and has specific properties. In your application, an object might be a form, a control such as a button, a database connection, or any of a number of other constructs. Each object is a complete functional unit, and contains all of the data and exposes all of the functionality required to fulfill its purpose. The ability of programmatic objects to represent real-world objects is called abstraction.

· Objects and Members

Objects are composed of members. Members are properties, fields, methods, and events, and they represent the data and functionality that comprise the object. Fields and properties represent data members of an object. Methods are actions the object can perform, and events are notifications an object receives from or sends to other objects when activity happens in the application.

To continue with the real-world example of a car, consider that a Car object has fields and properties, such as Color, Make, Model, Age, GasLevel, and so on. These are the data that describe the state of the object. A Car object might also expose several methods, such as Accelerate, ShiftGears, or Turn. The methods represent behaviors the object can execute. And events represent notifications. For example, a Car object might receive an EngineOverheating event from its Engine object, or it might raise a Crash event when interacting with a Tree object.

· Object Models

Simple objects might consist of only a few properties, methods, and perhaps an event or two. More complex objects might require numerous properties and methods and possibly even subordinate objects. Objects can contain and expose other objects as members. For example, the TextBox control exposes a Font property, which consists of a Font object. Similarly, every instance of the Form class contains and exposes a Controls collection that comprises all of the controls contained by the form. The object model defines the hierarchy of contained objects that form the structure of an object.

An object model is a hierarchical organization of subordinate objects contained and exposed within a main object. To illustrate, let’s revisit the example of a car as an object. A car is a single object, but it also consists of subordinate objects. A Car object might contain an Engine object, four Wheel objects, a Transmission object, and so on. The composition of these subordinate objects directly affects how the Car object functions as a whole.

5. Summary
· Abstraction is the representation of real-world objects as programmatic constructs. Programmatic objects can represent real-world objects through their implementation of members.

· Classes are the blueprints for objects. When an object is created, a copy of the class is created in memory, and values for member variables are initialized. A class can act as a template for any number of distinct objects.

· Encapsulation is a principle of object-oriented programming. An object should contain all of the data it requires and all of the code necessary to manipulate that data. The data of an object should never be made available to other objects. Only properties and methods should be exposed in the interface.

· Polymorphism is the ability of different objects to expose different implementations of the same public interface.

Unit 3

Creating the User Interface

1. User Interface Design Principles

2. Objectives Of user Interface

3. Composition

4. Adding Forms to Your Project
5. Using Forms
6. Using the Main Menu
7. The Integrated Development Environment: The Studio Windows
8. Studio Windows: The Server Explorer

9. Summary

1. User Interface Design Principles
Microsoft Visual Basic .NET is a programming environment used to create graphical user interface (GUI) applications for the Microsoft Windows family of operating systems. It usually ships in two types, either by itself or as part of Microsoft Visual Studio .NET. To use the lessons on this site, you must have installed either Microsoft Visual Basic .NET 2003 or Microsoft Visual Studio .NET 2003. All instructions on this site will be based on an installation of Microsoft Visual Studio .NET. From now on, unless specified otherwise, we will use the expressions "Microsoft Visual Basic" or "Visual Basic" to refer to Microsoft Visual Basic .NET 2003. If we want to refer to another version, we will state it.

After installing Microsoft Visual Studio .NET 2003, to use the programming environment, you must first open it. To do that, you would click Start -> (All) Programs -> Microsoft Visual Studio .NET 2003 -> Microsoft Visual Studio .NET 2003.

An efficient design that is easy to use is of paramount importance. This lesson presents guidelines for designing user-friendly, elegant, and simple user interfaces.

When designing the user interface, your primary consideration should be the people who will use the application. They are your target audience. Knowing your target audience makes it easier for you to design a user interface that helps users learn and use the application. A poorly designed user interface, on the other hand, can lead to frustration and inefficiency if it causes the target audience to avoid or even discard your application.

Forms are the primary element of a Microsoft Windows application. As such, they provide the foundation for each level of user interaction. Controls and menus can be added to forms to supply specific functionality. In addition to being functional, your user interface should be attractive and inviting to the user. The .NET Framework supports a variety of graphic effects that aid in the visual presentation of your application, including shaped forms and controls, transparent or translucent elements, and complex shading effects.

2. Objectives Of user Interface
· Describe the importance of the user interface

· Explain the role of forms, controls, and menus in the user interface

· Explain the importance of composition and color in your user interface

· Explain the use of images, icons, and fonts in the interactive design

3. Composition
Composition drives the “look and feel” of your user interface. How your user interface is composed influences how rapidly your application can be learned and adopted. Primary composition considerations include:

· Simplicity: Simplicity is an important aspect of a user interface. A visually “busy” or overly complex user interface makes it harder and more time-consuming to learn the application. A user interface should allow a user to quickly complete all interactions required by the program, but it should expose only the functionality needed at each stage of the application.

When designing your user interface, you should keep program flow and execution in mind, so that users of your application will find it easy to use. Controls that display related data should be grouped together on the form. Controls such as list boxes, combo boxes, and check boxes can be used to display data and allow users to choose between preset options. The use of a tab order (an order by which users can cycle through controls on a form by pressing the Tab key) allows users to rapidly navigate fields.

Trying to reproduce a real-world object is a common mistake when designing user interfaces. For instance, if you want to create a form that takes the place of a paper form, it is natural to attempt to reproduce the paper form in the application. This approach might be appropriate for some applications, but for others, it might limit the application and provide no real user benefit because reproducing a paper form can limit the functionality of your application. When designing an application, think about your unique situation and try to use the computer’s capabilities to enhance the user experience for your target audience.

Default values are another way to simplify your user interface. For example, if 90 percent of the users of an application will select Washington in a State field, make Washington the default choice for that field. (You should always make it easy to override the default value when necessary.)

Information from your target audience is paramount when designing a user interface. The best information to use when designing a user interface is input from the target audience. Tailor your interface to make frequent tasks easy to perform. After your application is complete, additional user input will facilitate continued improvement.

· Position of Controls: The location of controls on your user interface should reflect their relative importance and frequency of use. For example, if you have a form that is used to input both required information and optional information, the controls for the required information are more important and should receive greater prominence. In Western cultures, user interfaces are typically designed to be read left-to-right and top-to-bottom. The most important or frequently used controls are most easily accessed at the top of the form. Controls that will be used after a user completes an action on a form, such as a Submit button, should follow the logical flow of information and be placed at the bottom of the form.

It is also necessary to consider the relatedness of information. Related information should be displayed in controls that are grouped together. For example, if you have a form that displays information about a customer, a purchase, or an employee, you can group each set of controls on a tab control that allows a user to easily move back and forth between displays.

· Consistency: Your user interface should exhibit a consistent design across each form in your application. An inconsistent design can make your application seem disorganized or chaotic, hindering adoption by your target audience. Don’t ask users to adapt to new visual elements as they navigate from form to form.

Consistency is created through the use of colors, fonts, size, and types of control. Before any actual application development takes place, you should decide on a visual scheme that will remain consistent throughout the application. Avoid the temptation to show off. Extraneous use of controls or flashy visual elements only distracts users and makes your application less efficient.

· Aesthetics: Whenever possible, a user interface should be inviting and pleasant. Although clarity and simplicity should not be sacrificed for the sake of attractiveness, you should endeavor to create an application that will not dissuade users.

· Color: Judicious use of color helps make your user interface attractive to the target audience and inviting to use. It is easy to overuse color, however. Loud, vibrant colors might appeal to some users, but others might have a negative reaction. When designing a background color scheme for your application, the safest course is to use muted colors with broad appeal. Always research any special meanings associated with color that might affect user response to your application. If you are designing an application for a company, you might consider using the company’s corporate color scheme in your application. When designing for international audiences, be aware that certain colors might have cultural significance. Maintain consistency, and do not overdo the color.

· Fonts: Usability should determine the fonts you choose for your application. For usability, avoid fonts that are difficult to read or highly embellished. Stick to simple, easy-to-read fonts such as Palatino or Times New Roman. Also, as with other design elements, fonts should be applied consistently throughout the application. Use cursive or decorative fonts only for visual effects, such as on a title page if appropriate, and never to convey important information.

· Images and Icons: Pictures and icons add visual interest to your application, but careful design is essential to their use. Images that appear “busy” or distract the user will hinder use of your application. Icons can convey information, but again, careful consideration of end-user response is required before deciding on their use. For example, you might consider using a red octagon similar to a U.S. stop sign to indicate that users might not want to proceed beyond that point in the application. A red octagon is not a universally recognized symbol of “stop,” however, so its significance might be lost on an international audience. Know your target audience, and tailor the use of icons and visual elements to the audience. Whenever possible, icons should be kept to simple shapes that are easily rendered in a 16-by-16-pixel square. Complex pictures can suffer a severe loss of resolution (and thus become unusable) when degraded.

· Shapes and Transparency: The .NET Framework provides tools for creating forms and controls with varying levels of opacity, using shapes other than the traditional rectangle. These tools can create powerful visual effects, but they should not be overused. For example, although it might be interesting and unique to have a text box shaped like a doughnut, such a text box might be inefficient or detract from the usability of your application. Always keep the end user in mind when applying these effects. Similarly, translucent forms can be used to allow a user to manipulate a form in the foreground while monitoring action on a background form. However, these aspects of the aesthetics of your application should always serve the ultimate purpose—usability.
4. Adding Forms to Your Project

Forms enable interaction between your application and a user. When you create a new Windows Forms project, an initial form, named Form1, is added by default. Form1 is not an actual instance of a form, however, but rather a class that represents the code behind an instance of a form. You can edit Form1 by adding controls, menus, and other visual elements in the designer. The designer is a graphic representation of the designable component (usually a form) that you are creating, and it provides the ability to add controls to your form by dragging them from the tool box to the design surface represented on the screen. While designing a form or other component, you are said to be at design-time. As your application grows in size, you will want to add additional form classes to your project.

To add a new form to a project

4.1 On the Project menu, click Add Windows Form. The Add New Item dialog box opens.

4.2 Click Windows Form, and click Open. A new form is added to the development environment.

You can also add a new form using code. In this case, you declare a variable that represents a type of form and creates an instance of that form. This form can be used and displayed during execution of your application. Note that you will be unable to use any design tools to create this form, and it will be unavailable at design time. The code method is often employed when you want to display a form that already exists.

4.1 To add a form to your application at run time

Declare and instantiate a variable representing your form in the same manner as you would any other class. For example:

‘This example assumes that you have already designed a form

‘ called Dialog

Dim myForm As Dialog

myForm = New Dialog()

or

Dim f as new dialog

4.2 Visual Inheritance

Visual inheritance is a means of creating forms that are closely related. The technique allows you to create a form that incorporates all the members, controls, menus, and code associated with an existing form, and to use the new form as a base for additional functionality. Thus, you can create a single form that incorporates elements common to the entire interface and then individually tailor each form for its specific purpose. You can use either the Inheritance Picker or code to create the inheritance relationship.

To create an inherited form with the Inheritance Picker

1. From the Projects menu, select Add Inherited Form. The Add New Item dialog box opens.

2. In the left pane of the dialog box, choose Local Project Items. In the right pane, select Inherited Form. Name this form in the Name box, and click Open to open the Inheritance Picker.

3. The forms in your project are displayed in the Inheritance Picker. If the form from which you want to inherit is one of these forms, choose it and click OK. A new inherited form is added to your project.

If you want to inherit from a form outside of your project, click Browse. Navigate to the project containing the form you want. Click the DLL file containing the form, and click Open.

You now return to the Inheritance Picker dialog box, where the selected project is now listed. Choose the appropriate form, and click OK. A new inherited form is added to your project

5. Using Forms
Forms can display data and receive user input. Although it is possible to create an application, such as a Windows service or a console application, that has no forms at all, applications designed for frequent user interaction usually contain at least one form. Applications that are more complex often require several forms to allow the program to flow in a consistent and logical manner.

· The Integrated Development Environment: The Title Bar

To start Microsoft Visual Studio .NET 2003, on the Taskbar, click Start (All) Programs -> Microsoft Visual Studio .NET 2003 -> Microsoft Visual Studio .NET 2003 .

 [image: image3.png]Microsoft Development Environment [design] - Start Page

Get Started Find Samples

Filter by:
Samples Profile: & Keyword

© Type

Visuat Studio Developer =1 |

B output

After Microsoft Visual Studio has been opened, the screen you look at is called an Integrated Development Environment or IDE. The IDE is the set of tools you use to create a program.

When you freshly start Visual Studio, the main section of the title bar displays the name of the application as Microsoft Developer Environment. Later on, if you start a project, the title bar would display the name of your project, followed by the name of the programming environment you selected. The main section of the title bar is also used to move, minimize, maximize the top section of the IDE, or to close Visual Studio. On the right section of the title bar, there are three system buttons with the following roles:

	Button
	Role

	[image: image4.png]

	[image: image5.png]

	Minimizes the window

	[image: image6.png]

	[image: image7.png]

	Maximizes the window

	[image: image8.png]

	[image: image9.png]

	Restores the window

	[image: image10.png]

	[image: image11.png]

	Closes the window

The Integrated Development Environment: The Main Menu

Under the title bar, there is a range of words located on a gray bar. There are four main types of menus you will encounter. A menu that is disabled is not accessible at the moment. This kind of menu depends on another action or the availability of something else.

[image: image12.png][_Open solution,

A menu with three dots means that an intermediary action is required in order to apply its assigned behavior. Usually, this menu would call a dialog box where the user would have to make a decision.

[image: image13.png]‘Add Project

A menu with an arrow holds a list of menu items under it. A menu under another menu is called a submenu. To use such a menu, you would position the mouse on it to display its submenu.
Notice that, on the main menu (and any menu), there is one letter underlined on each word. Examples are F in File, E in Edit, V in View, etc. The underlined letter is called an access key. It allows you to access the same menu item using the keyboard. In order to use an access key, the menu should have focus first. The menu is given focus by pressing either the Alt or the F10 keys.

On some menu items, there is a key or a combination of keys we call a shortcut. This key or this combination allows you to perform the same action on that menu using the keyboard.
If the shortcut is made of one key only, you can just press it. If the shortcut is made of two keys, press and hold the first one, while you are holding the first, press the second key once and release the first key. Some shortcuts are a combination of three keys.

	Press
	Means

	T
	Press the T key

	Alt, G
	Press and release Alt. Then press G

	Ctrl + H
	Press and hold Ctrl. While you are still holding Ctrl, press H once. Then release Ctrl

	Ctrl + Shift + E
	Press and hold Ctrl. Then press and hold Shift. Then press E once. Release Ctrl and Shift

6. Using the Main Menu
1. On the main menu, click File -> New -> Project...

2. In the Project Types tree list of the New Project dialog box, click the Visual Basic Projects node

3. In the Templates list, click Windows Application

4. In the Name edit box, type Exercise1

5. In the Location text box, type C:\Programs\MSVB unless you are not allowed to create that directory for any reason. In that case, use any directory.

[image: image14.png]New Project

Project Types:

Tenpistes:

3 Visual Basic Projects

(20 visual C= Projects

{20 visual 3= Projects

(20 visusl C++ Projects

{20 Setup and Deployment Projects
{2 Other Projects

{0 visual Studio Solutions

Class Lirary

Windons Viindows
Contral Lbrary

Application

SmartDevice ASP.NET Web ASP.NET Web
Appicaton Appication Service

/A project fo creating an applcation with 2 Windows user interface

Neme: Seerose

Locaton: CoPrograms vSVB

Project il be crested at C: Programs Vs VB Exercie 1.

s

i

7. Click OK. This creates a new project

The Integrated Development Environment: The Integrated Development Environment: The Toolbars section. The mouse pointer will change into a cross:
[image: image15.png]2 M
e Edt Vew Toos Window tHep

b @ he|o-c-p-5

Development Environment [design] - Star

% stortpoge |

Then click and drag away from that position:

[image: image16.png]22 Microsoft Development Environment [design] - Start Page
ge it

Window _Hep

start Page |

[proects I _ontine Resources I 1oy profue |

In the same way, you can position the toolbar anywhere on the screen. You can also attach or "dock" it to one of the four sides of the IDE. When a toolbar is not docked to one side of the IDE, it is said to float. When a toolbar is floating, you can resize it by dragging one of its borders. If a toolbar is floating, to put it back to its previous position, you can double-click its title bar.

By default, when you start Visual Studio, it is equipped with one one toolbar: Standard. To get more toolbars, on the main menu, you can click View -> Toolbars and click the toolbar of your choice. You can also right-click any available toolbar or the main menu. This displays a list of all the available toolbars. Those that are currently opened have a check mark next to them. You can get a list of the toolbars that are available if you right-click any button on any toolbar or menu. On this site, every toolbar is referred to by its name.

Customizing a Toolbar

1. To customize the Standard toolbar by adding buttons to it, right-click anything on the main menu or the toolbar and click Customize...

2. On the Customize dialog box, click the Commands tab

3. In the Categories list, click Debug

4. In the Commands list, click and drag Start Without Debugging

5. Position it somewhere in the Standard toolbar:

6. [image: image17.png]Exercise1 - Microsoft Visual Basic .NET [design] - Form1.vb [Design]
Vew Project Buld Debug Data Toos Window Heb
$ S| Wb |5 0G0 o0 B § ST et

o

=
R

T Tyhole Diassently
tart / Continue
‘Start Without Debugging
sreak Al
StopDebugong

7.
Release the mouse

7. Click the Close button on the Customize dialog box

7. The Integrated Development Environment: The Studio Windows
Some windows are represented with an icon but hides the rest of the body. For example, by default, on the left of the screen, you may see an icon made of two computers [image: image18.png]

. To display such a window, you can position the mouse on it.

[image: image19.png]Exercise - Microsoft

sual Basic .NET [design] - Form1.vb [Design]
e Edt Ve Popct Bid Dobig Dgio Fomat Iods Window teb
B & 8|m e | DL (o R 8 8
- s E@| B0 BB o
Form1.vb [Design] |

xoqi00L Yl

When creating your applications, you will use a set of windows that each accomplishes a specific purpose.:

If you expand a window, it would display a title bar with two buttons. One is called Auto Hide and the other is the classic Close button:

[image: image20.png]5[Toobox
3 My User Controls
Data

xogjooy

Components
Vindows Forms
X Pointer

38| Button
A

If you expand a window but find out you don't need it any more, you can just move the mouse away from it. The window would return to its previous state. Based on this functionality, if you are working with a window and move the mouse away from it, it would retract. If you need it again, you would have to reopen it using the same technique. If you are going to work with a certain window for a while, you can keep it open even if you move the mouse away. To do this, click the Auto Hide button. If clicked, the Auto Hide button changes from pointing left to pointing down.

When Visual Studio opens, it make some windows necessary. These are the most regularly used windows. If you think that one of them is not regularly used in your types of assignments, you can remove it from the screen by clicking its Close button. All of the windows you can use are listed in the View menu. Therefore, if a window is not displaying, you can click View on the main menu and click a window of your choice.

8. Studio Windows: The Server Explorer

[image: image21.png]Server Explorer
EO%a
B o o

- O TELES bethesdacr Ldbo
- B TELES.Northwind.dbo

3 teles.People.cho

The Server Explorer is an accessory that allows you access SQL Server databases without using the physical server and without opening Enterprise Server or SQL Query Designer.

The items of this window display in a tree. To expand a node, you can click its + button. To collapse it, click its - button. Later on, you will see that you can drag some items to add to your application.
· The Toolbox
The Toolbox is one of the most regularly used windows. It provides objects called Windows Controls or simply, controls. Because there are so many items available, the Toolbox organizes them by categories and each category is represented with a button. To display a category, you can click its button. This causes the other categories to be hidden. In the same way, you can click a different category. The available items in each category appear as buttons, you can click one of these to select it.

 9.
Summary

· Forms are the primary unit of the user interface for a Windows Forms program. You should manage your forms in such a manner as to present a consistent, complete, and attractive visual interface to the end user. You can add forms to your application at design time or at run time, and you can use visual inheritance to create several forms with similar looks and layouts.

· An object is a programmatic construct that represents something. In the real world, objects are cars, bicycles, laptop computers, and so on. Each of these items exposes specific functionality and has specific properties.

· Toolbox Custom and Standard toolbox.
Unit 4

Types and Members

1. Introduction

2. Objectives

3. The .NET Data Types

4. Using Data Type Functionality

5. Summary

1. Introduction

The Microsoft .NET Framework provides a robust system of primitive types to store and represent data in your application. Data primitives represent integer numbers, floating-point numbers, Boolean values, characters, and strings. This type system enforces type-safety so that implicit casts occur only when no loss of data is possible. Explicit conversions can be performed in situations that might cause a loss of data. The .NET data types contain functionality to perform a variety of type-related conversions and tasks.

2. Objectives
· Describe the data types provided by the .NET Framework

· Explain how to perform implicit and explicit conversions between types

· Describe the functionality provided by types of the .NET Framework

· Describe string manipulation functions with the String class methods

3. The .NET Data Types
The .NET data types store your data. They are value types and can be broken down into the following subcategories: Integer types, floating-point types, the Boolean type, and the Char type. Two built-in reference types, the String type and the Object type, are an integral part of your application.

· Integer Types: The .NET Framework provides a variety of Integer types. Summarizes these types and lists their corresponding Visual Basic .NET.

	Type
	Visual Basic .NET Name
	Description
	Range

	System.Byte
	Byte
	8-bit unsigned integer
	0 to 255

	System.Int16
	Short
	16-bit signed integer
	-32768 to 32767

	System.Int32
	Integer
	32-bit signed integer
	-231 to 231-1

	System.Int64
	Long
	64-bit signed integer
	-263 to 263-1

	System.SByte
	(Not implemented)
	8-bit signed integer
	-128 to 127

	System.UInt16
	(Not implemented)
	16-bit unsigned integer
	0 to 65535

	System.UInt32
	(Not implemented)
	32-bit unsigned integer
	0 to 232-1

	System.UInt64
	(Not implemented)
	64-bit unsigned integer
	0 to 264-1

You can assign values to the Integer types using either decimal or hexadecimal notation. To use hexadecimal notation in an integer literal, it should be prefixed with &H for Visual Basic .NET. For example:

Dim myInteger As Integer

myInteger = &H32EF

· Floating-Point Types: Three floating-point types can be used to represent numbers that have a fractional component.

	Type
	Visual Basic .NET Name
	Description
	Precision
	Range (Approximate)

	System.Single
	Single
	32-bit floating-point variable
	7 significant digits
	+/- 1.4 x 10-45 to +/-3.4 x 1038

	System.Double
	Double floating-point variable
	64-bit significant digits
	15–16
	+/- 5.0 x 10-324 to +/-1.7 x 10308

	System.Decimal
	Decimal floating-point variable
	128-bit digits
	28 significant
	+/- 1.0 x 10-28 to +/- 7.9 x 1028

The System.Single type is appropriate for floating-point calculations that require a lower degree of precision than normal floating-point operations. It provides seven significant digits of precision. For a much greater degree of precision, you can use the System.Double type, which also has the ability to handle vastly larger values. The System.Decimal type is specifically designed to facilitate financial calculations and is an ultra-high-precision variable. Although it cannot hold values as great as System.Double, it has a much higher level of precision, providing 28 significant digits.

· Non-Numeric Types

Four additional types do not represent numbers: System.Boolean, System.Char, System.String, and System.Object.

· System.Boolean: The System.Boolean type is used to represent a value that is either true or false. It is called Boolean in Visual Basic .NET. The values that are valid for Boolean variables are True and False
· System.Char: The System.Char type represents a single instance of a 16-bit Unicode character. It is called Char in Visual Basic .NET.

Dim myChar As Char

myChar = "W"c

· System.String: The System.String type is a reference type that represents a series of Char data types. In everyday terms, a string can represent a word, a paragraph, a key value, or any other string of characters. In Visual Basic .NET, this type is called String,

Dim myString As String

myString = "This is a String! Wow!"

The String class contains a good deal of built-in functionality.

· System.Object: The Object type is the supertype of all types in the .NET Framework. Every type, whether value type or reference type, derives from System.Object. In Visual Basic .NET, it is called Object.

Dim myObject As Object

myObject = 543

 myObject = New System.Windows.Forms.Form()

· Converting Types

At times, you will need to convert data from one type to another. Data can be converted in two ways: implicitly, which means that the conversion is performed automatically, and explicitly, which means that you must specifically ask for the conversion to be performed.

· Implicit Conversions: Implicit conversions between types are performed whenever the conversion can occur without the loss of data. For example:

Dim anInteger As Integer = 100

Dim aLong As Long

' Because a long can be assigned to every possible value of integer,

' there is no chance of losing data

aLong = anInteger

If a type can be implicitly converted to another type, you can use the first type anywhere that the second is required without special syntax. For example, in method calls:

' This example assumes that the TakesADouble method requires a

' Double as a parameter

Dim I As Integer = 100

' I is implicitly converted to Double and used in the method call

TakesADouble(I)

	Implicit Conversions in Visual Basic .NET

	From
	To

	Byte (Visual Basic .NET)
	Short, Integer, Long, Single, Double, Decimal

	Short

Short
	Integer, Long, Single, Double, Decimal

int, long, float, double, decimal

	Integer

Int
	Long, Single, Double, Decimal

long, float, double, decimal

	Long

Long
	Single, Double, Decimal

float, double, decimal

	Single

Float
	Double

double

	Char

Char
	Integer, Long, Single, Double, Decimal

int, uint, long, ulong, float, double, decimal

· Explicit Conversions

When performing a conversion where types cannot be implicitly converted, you must explicitly convert the types. This conversion is called a cast. Explicit conversions are accomplished in Visual Basic .NET using the CType function

Dim aLong As Long = 1000

Dim anInteger As Integer

anInteger = CType(aLong, Integer)

Explicit conversions can be risky. In the preceding example, the conversion was accomplished without any difficulty because both a Long and an Integer can hold a value of 1000. However, consider the following example:

Dim anInteger As Integer = 100000

Dim aShort As Short

aShort = CType(anInteger, Short)

· Option Strict in Visual Basic .NET

Visual Basic .NET provides a programming option called Option Strict. When Option Strict is on, strong typing is enforced and only conversions that can be performed without loss of data are allowed. When Option Strict is off, however, strong typing is not enforced and all conversions are performed implicitly. The default setting for Visual Basic .NET is Option Strict Off. To set Option Strict On, use the Option keyword in the first line of your code file. For example:

Option Strict On

The primary purpose of Option Strict Off is backward compatibility with previous versions of Visual Basic. Whenever possible, you should program with Option Strict On. This will allow you to catch many errors during compilation that would be extremely difficult to track down at run time.

· To convert types

· If the conversion is of a type where no data can be lost, it will be performed implicitly and no explicit declaration is needed.

· If the conversion potentially could cause a loss of data, you must perform an explicit cast to convert your types. Use the CType function in Visual Basic .NET

4. Using Data Type Functionality
All data types have built-in functionality. At the very least, they all support the following four methods:

1. Equals: Determines whether two instances are equal

2. GetHashCode. : Serves as a hash function for a particular type

3. GetType: Returns the type object for the current instance

4. ToString: Returns a human-readable form of the object.

5. Summary
· The Microsoft .NET Framework provides a robust system of primitive types to store and represent data in your application. Data primitives represent integer numbers, floating-point numbers, Boolean values, characters, and strings.

· The .NET Framework provides a variety of Integer types, floating point types, Boolean

Unit 5

Operators

1 Introduction

2 Type of Operators

2.1 Assignment operator

2.2 Relational operator

2.3 Comparison operator

2.4 Arithmetic operator

2.5 Logical operator

2.6 Conditional operator

1. Introduction

Addition, subtraction, multiplication, division… this is what operators are all about.

You will learn how to use the following operators:

· Assignment

· Arithmetic

· Comparison

· Logical

· Conditional

· String

2. Type of Operators

2.1 Assignment operator

Assignment operators are used to assign values. A frequently used assignment operator is ‘=’ (equal). Let’s see how we can assign the integer value of 5 to variable x.

x = 5;
Well, that was certainly simple. You remember this from your first math hours.

You can also modify the value of the variable by adding to that variable another one. For example, we want to add to x, which has the value 4, variable y, which has the value 8.

x = 4; // assign to var x, value 4
x = 8; // assign to var y, value 8
x = x + y; // assign to x the result value of adding x with y

We just added x with y and assigned the value back to x. After this easy operation, x holds the value 12 (4+8). To put it more simple, if we replace the variables with the values they hold, we see exactly how the computer makes the operation:

x = 4 + 8;
We can do this with any arithmetic operation allowed in JavaScript.

x = 4; // assign to var x, value 4
y = 8; // assign to var y, value 8
x = x – y; // result is -4
x = x * y; // result is 32
x = x / y; // result is 0.5

We can also add a value to a variable and assign it to another:

x = y + 3
If we consider, like in the earlier example, x to be 4, and y to be 8, the result will be 11 (8+3), because the earlier value of x is being reset.

x = 4; // assign to var x, value 4
y = 8; // assign to var y, value 8
x = y + 3; // Value of x is being reset to 11, the result of y + 3 (8 + 3)
And the rest arithmetic operators allowed by JavaScript can be used. You’ll find out what they do, and what are they used for in the following chapters.

Nevertheless, be sure you understand this lesson until now because abridged operators may be confusing to understand.
There is a short form of writing x = x + y. This is x+=y.
Confused? It’s very simple actually. There isn’t more to explain about this, because it’s just a short form. You may use it or not. Most programmers use it. Here is a useful table with all the operators that can be abridged, and how.

In the left part you have the abridged version, in the right the lengthen one.

x += y is x = x + y
x -= y is x = x - y
x *= y is x = x * y
x /= y is x = x / y
x %= y is x = x % y
x <<= y is x = x << y
x >>= y is x = x >> y
x >>>= y is x = x >>> y
x &= y is x = x & y
x ^= y is x = x ^ y
x |= y is x = x | y
You probably don’t understand all the operators listed here, but they will be described in the next lessons.

Now let’s use the short form with our earlier script:

x = 4; // assign to var x, value 4
y = 8; // assign to var y, value 8
x -= y; // result is -4 and it’s stored in x
x *= y; // result is 32 and it’s stored in x
x /= y; // result is 0.5 and it’s stored in x
The results are the same as the lengthen version, but easier to write, and maybe even to understand for an advanced programmer who is used to the abridged version.

Also if you want to add to the current ‘x’ value, another value… let’s say 3, it’s better to do it like this:

x = 4; // assign to var x, value 4
x += 3 // 4 + 3 – after this x is equal to 7
than the lengthen version, who would have looked like this:

x = 4; // assign to var x, value 4
x = 3 + 4 // 4 + 3 – after this x is equal to 7
2.2 Arithmetic

Addition, subtraction, multiplication, division… you know all of this. In JavaScript (and in many other languages) addition sign operator is +, subtraction sign is -, for multiplication you use * (asterisk) and for division / (slash). Let’s see the most common arithmetic operators in a simple table:

Operator Sign

Addition +
Subtraction -
Multiplication *
Division /

In the following lines, you will see some examples uses of operators.

x = 4 + 2 // x will hold the value 6 after this

x = x + 1 // x will be incremented by 1, and will be 7

y = x - 1 // y will hold the value of x - 1, that is 6
z = x * y // z will hold the value resulted by the multiplication of x value (7) to y value (6), that is 7 * 6 = 42

q = z / 2 // divide value hold by z (42) and store it in q. Result is 42 / 2 = 21
You saw in the above examples that we added 1 to x, and stored it back in x, we incremented value of x by one. You often need to increment or decrement variable values by one, especially in loops (you will find out what this are in the following chapters of this book). Therefore, just like in the previous lesson, there is a short form for incrementing a variable value by one:

++x // this is the same as x = x + 1
--x // this is the same as x = x – 1
Let’s assign a value to variable x and see what happens to it after it’s incremented and decremented:

x = 5
++x // var x is now 6
--x // var x is now 5
There are two types of incrementing, pre-increment and post-increment. In the above examples, we used pre-increment operators, because they were put in the front of the variable. Post-increment variables are put after the variable:

x = 5
x++ // var x is now 6
x-- // var x is now 5
Well, you probably think that they do the same thing… wrong. But I don’t blame you because you can’t understand the difference till you learn the loops, where post-increment and pre-increment do make a difference. For now let’s just say that pre-increment always increments the value once, no matter if the condition is false from the beginning, and post-increment never increments the value if the condition is false from the beginning. Don’t worry if it sounds confusing, we will come back at this when I will teach you JavaScript loops.
It’s time to complete the earlier table with these new operators:

Operator Sign

Addition +
Subtraction -
Multiplication *
Division /
Increment ++
Decrement --

The last unary operator is the negation operator. It’s simple to understand. If we have a variable that holds a value, negating the variable will negate the value.

x = 4 // assigned 4 to variable x
-x // now x holds number -4

The operator looks the same as the subtraction operator, but when it’s used like this, in the front of a variable, it is considered a negation operator. Here’s our table till now, there is one operator left:

Operator Sign

Addition +
Subtraction -
Multiplication *
Division /
Increment ++
Decrement --
Negation -

There is one operator left, the only binary arithmetic operator, modulus (%), or remainder. These operator calculates the remainder of two integers in a division operation.

11 % 3 = 2 // because 11 / 3 = 3 and remainder 2

If you didn’t understand the above example, I will explain it more exhaustive. We divide 11 by 3 (11 / 3). This division doesn’t return an integer, it returns 3,6666666666666666666666666666667, a floating number. Therefore, the computer finds a different number instead of 11, a smaller one, which will divide exactly by 3. The following smallest number after 11 is 10, but it’s not good, because still doesn’t divide by 3. Next number is 9, and it divides by 3, 9 divided by 3 resulting 3. The difference between our first number that didn’t exactly divide, 11, and the smallest number below 11 is what modulus returns: 11 – 9 = 2. The remainder is 2.
If we had division terms that would divide exactly, returning an integer, the modulus would return remainder 0. Let’s say that we had 9 divided by 3 in the first place, modulus operation and result would look like this:

9 % 3 = 0
This is our final arithmetic operators table:

Operator Sign

Addition +
Subtraction -
Multiplication *
Division /
Increment ++
Decrement --
Negation -
Modulus %

2.3 Comparison
In programming you will often compare two or more values, and depending on the result you get, the script will take a decision. By comparing two terms like this:

4 < 6

we can only get one result, true or false… in this case the result is ‘true’. 4 can only be smaller or bigger than 6, it can’t be equal.
If it is to compare two numbers to see if they are equal, we can do it like this:

5 == 5

We can’t use the usual ‘=’ (equal) sign because it is already assigned for declaring variables. Therefore, for testing equality, we use two equal signs (==).
In this case, the result can be true or false, again. If the numbers are equal, “5==5” will return true, if not the returned result will be false. Of course, 5 equals 5 and the result is ‘true’.

What if we want to test for non-equality? If x is equal to y, the returned result to be false, and if x is not equal to y, the returned result to be true. How can we do that? Like this:

5 != 5

If x (5) and y (5) are not equal, the result returned will be true. This is somehow the reverse of ‘==’. In our case, the returned result will be false, because 5 is equal to 5.

In the following expression:

7 < 7

the returned value will be false, because 7 is not smaller than 7… it is equal. However, there is the ‘<=’ operator that returns true if the left term is smaller or equal to the right term. Therefore, while “7 < 7” return false,

7 <= 7

returns true, because it also accepts the possibility of the left term being equal to the right term.
The

7 >= 7

works the same, but it returns true when the left member is bigger or equal to the right member.

It’s time to see a table with all the comparison operators:

Operator Sign

Equal to… ==
Not equal to… !=
Less than… <
Less than or equal to… <=
Greater than… >
Greater than or equal to… >=

2.4 Logical

Logical operators are similar to the comparison operators, and comparison operators are usually used with logical operators.
Logical operators compare the result of an expression and return ‘true’ or ‘false’.

The easiest way for you to understand logical operators is to see some examples.

The simplest logical operator is the NOT (or negation) operator. It returns true only if the term evaluated has the value 0.
For example

var x = 0;
!x;

will return true. Any other value except 0 will return false.

For understanding the ‘AND’ operator, let’s see the following example:

x > 5 && y < 10

If x is bigger than 5, and y is smaller than 10, the expression will return ‘true’. If x is bigger than 5 and y is bigger than 10, the expression will return ‘false’. Vice versa, if x is smaller than 5 and y is smaller than 10, the expression will return ‘false’.
That means that the expression will return true only if both comparisons return true.

For understanding the ‘OR’ operator we will use an example similar to ‘AND’:

x > 5 || y < 10

This returns true if only one of the comparison returns true. If none of the comparisons returns true, than the expression returns false. If both comparisons return false, than the expression returns false.

Operator Sign

NOT !
AND &&
OR ||
2.5 Conditional
There are only two conditional operators. They act similar to the ‘if – else’ instruction (the ‘if – else’ instruction will be covered in the following chapters).
The ‘?’ and ‘:’ conditional operators are used together.
Let’s see an example of how this conditional operators act:

x <= y ? “X is smaller or equal to Y” : “X is bigger than Y”

The first expression is a comparison expression:

x <= y

The following is the ‘?’ conditional operator which tells the interpreter a condition is coming.
If X is smaller or equal to Y, the first string, before the “:” will be displayed:

X is smaller or equal to Y

If X is bigger than Y, the second string will be displayed, the one after the “:”:

X is bigger than Y

An easy method to do a little comparison and make a decision based on the result of the comparison.

Let’s review. If the expression before the ‘?’ operator returns true, the first option will be executed, the one before the ‘:’. If the expression returns false, the second option will be executed, the one after the ‘:’. We can write it like this, for a better understanding.

condition ? if_true : if_false

2.6 String

You can compare strings using the comparison operators about which you learned above and an extra operator, the concatenating operator.
The concatenate operator can be used to concatenate two or more strings. ‘+’ (plus) sign is used for string concatenating:

”This is “ + “a string”

will return

”This is a string”
Unit 6

Using Constants, Enums, Arrays, and Collections

1. Introduction

2. Objective

3. Constants and Enumerations

4. Arrays

5. Summary
1. Introduction
When working with objects, it is frequently necessary to organize groups of objects into some kind of structure. For example, groups of similar or dissimilar objects might need to be accessed in sequence and will require syntax to keep track of their organization. Arrays allow you to organize groups of similar objects and refer to them by an index rather than by a name. Collections are similar to arrays but implement advanced functionality and can be used to organize dissimilar groups of objects as well. Constants can have user-friendly names to represent frequently used values. Enumerations (Enums) allow you to organize sets of related integral constants and use the sets to help make your application easy to read and debug.

2. Objective
· Create constants and enumerations, and use them in methods

· Describe how to create and use arrays

· Explain what a collection is and how to use one

· Describe how to enumerate through the members of a collection or an array

3. Constants and Enumerations
You might find that you frequently use certain values in your application. Constants allow you to assign user-friendly names to these values and refer to them in code. Enumerations are user-defined sets of integral constants that correspond to a set of friendly names. Using constants and enumerations makes your code easier to read, easier to debug, and less prone to errors caused by typographical errors.

Using Constants

Constants allow you to refer to frequently used values by friendly names. The Const (const) keyword defines a constant. For example:

Public Const Pi As Double = 3.14159265

Constants can be of any intrinsic or enumerated type, but they cannot be of a user-defined type or an array. As the name implies, constants have a fixed value that, once set, cannot be changed or redefined. Once a constant is defined, you can use its name in code in place of the value it represents. For example:

Public Const Pi as Double = 3.14159265

Public Function CalculateCircleArea(ByVal r as Double) as Double

 Return Pi * r ^ 2

End Function

Like variables, constants can be of any access level. If you want your constant to be available to all users of your application or component, you can declare it with the Public (public) keyword, as shown in the preceding examples. To create a constant for use only by the class, use the Private (private) keyword. The Friend (internal) keyword specifies assembly level access, and the Protected (protected) keyword allows access by inheriting types.

Using Enumerations

Enumerations allow you to work with sets of related constants and to associate easy-to-remember names with those sets. For example, you could declare a set of enumeration constants associated with the days of the week and then refer to them by name in your code. The following code demonstrates how to declare an enumeration:

Public Enum DaysOfWeek

 Monday = 1

 Tuesday = 2

 Wednesday = 3

 Thursday = 4

 Friday = 5

 Saturday = 6

 Sunday = 7

End Enum

The default data type for enumerations is Integer (int), but it can be any of the integral numeric data types (in Visual Basic .NET: Byte, Short, Integer, and Long;)

Public Enum DaysOfWeek As Byte

It is not necessary to supply values for the members of your enum. If you choose not to designate specific values, the members will be assigned default values numbered sequentially starting from zero. For example:

Public Enum Numbers

 zero ' equals zero

 one ' equals one

 two ' equals two

End Enum

In Visual Basic .NET, enumeration members convert to the value that they represent and can be used as constants in code. For example

‘ This uses the Numbers enum from the previous example

MessageBox.Show((Numbers.two * 2).ToString()) ' Displays 4

Because enumerations are user-defined types, you can create methods that require enumeration members as values instead of numeric values. By requiring enum members as parameters instead of numbers, you create code that is less prone to errors from inaccurate typing. The following example uses the DaysOfWeek enum from the previous example and demonstrates how to create a method that requires an enum member as a parameter:

Public Sub ScheduleDayOff(ByVal day As DaysOfWeek)

 Select Case day

 Case DaysOfWeek.Monday

 ' Implementation code omitted

 Case DaysOfWeek.Tuesday

 ' Implementation code omitted

 ' Additional cases omitted

 End Select

End Sub

4. Arrays
Arrays are a way to manage groups of similarly typed values or objects. With arrays, you can group a series of variables and refer to them with an index. You can loop through all or part of the variables and examine or affect each in turn. You also can create arrays with multiple dimensions. Arrays in the .NET Framework have built-in functionality to facilitate many tasks.

Declaring and Initializing Arrays

Arrays can be declared and initialized in the same statement. When declaring an array in this manner, you must specify the type and number of the array elements. All arrays in Visual Basic .NET are zero-based—meaning the index of the first element is zero—and numbered sequentially. In Visual Basic .NET, you must specify the number of array elements by indicating the upper bound of the array. The upper bound is the number that specifies the index of the last element of the array.

' This line declares and initializes an array of 33 integers, with

' indexes ranging from 0 to 32

Dim myIntegers(32) As Integer

You can dynamically initialize arrays in Visual Basic .NET as well, but the syntax is somewhat less flexible. If you declare an array without specifying the number of elements on one line, you must provide values for each element when initializing the array. Initial values can be provided for an array by enclosing them in braces ({}) and separating them with commas, as the following example demonstrates:

' This line declares the array

Dim myIntegers() As Integer

' This line initializes the array to six members and sets their values

myIntegers = New Integer() {0,1,2,3,4,5}

In Visual Basic .NET, you must use the ReDim statement to change the number of elements in an array. An example follows:

Dim myIntegers(32) As Integer

' This line reinitializes the array

ReDim myIntegers(45)

When creating an array of reference types, declaring and initializing an array does not create an array filled with members of that type. Rather, it creates an array of null references that can point to that type. To fill the array with members, you must assign each variable in the array to an object, which can be either a new object or an existing object. For example:

' This example creates an array of Widgets, then assigns each variable

' to a Widget object

Dim Widgets(10) As Widget

' Assigns Widgets(0) to a new Widget object

Widgets(0) = New Widget()

' Assigns Widgets(1) to an existing Widget object

Dim aWidget As New Widget()

Widgets(1) = aWidget

' Loops through Widgets and assigns 2 through 10 to a new object

Dim Counter As Integer

For Counter = 2 to 10

 Widgets(Counter) = New Widget()

Next

· Multidimensional Arrays

The arrays discussed thus far are linear arrays, that is, arrays with only one dimension. The .NET Framework supports two kinds of multidimensional arrays: rectangular arrays and jagged arrays. The next two sections will discuss each type of multidimensional array.

· Rectangular Arrays

Rectangular arrays are arrays in which each member of each dimension is extended in each other dimension by the same length. For example, a two-dimensional array can be thought of as a table, consisting of rows and columns. In a rectangular array, all the rows have the same number of columns.

You declare a rectangular array by specifying additional dimensions at declaration. The following code demonstrates various ways to declare a multidimensional rectangular array:

' Declares an array of 5 by 3 members

Dim intArrays(4, 2) As Integer

' Declares a two-dimensional array and sets initial values

Dim intArrays2(,) As Integer = {{1, 2, 3}, {4, 5, 6}}

' Declares a cubical array and sets initial values

Dim cubeArray(, ,) As Integer = {{{7, 2}, {1, 4}}, {{3, 5}, {4, 4}}}

 ' Declares a complex array of 3 x 3 x 4 x 5 x 6 members

Dim complexArray(2, 2, 3, 4, 5) As Integer

· Jagged Arrays

The other type of multidimensional array is the jagged array. A two-dimensional jagged array can be thought of as a table where each row can have a different number of columns. For example, consider a table where families are the rows and family members are the columns. Unless each family has the same number of members, each row will have a variable number of columns. You can use a jagged array to represent such a table.

A jagged array is really an array of arrays. To create a jagged array, you declare the array of arrays with multiple sets of parentheses or brackets, and you indicate the size of the jagged array in the first set of brackets (parentheses). The following example demonstrates how to create a simple jagged array:

' Declares an array of 3 arrays

Dim Families(2)() As String

' Initializes the first array to 4 members and sets values

Families(0) = New String() {"Smith", "Mom", "Dad", "Uncle Phil"}

' Initializes the second array to 5 members and sets values

Families(1) = New String() {"Jones", "Mom", "Dad", "Suzie", _

 "Little Bobby"}

' Initializes the third array to 3 members and sets values

Families(2) = New String() {"Williams", "Earl", "Bob"}

· The ArrayList Class

The System.Collections.ArrayList class provides general collection functionality suitable for most purposes. This class allows you to dynamically add and remove items from a simple list. Items in the list are retrieved by accessing the item index. You can create a new instance of the ArrayList class as shown in the following example:

Dim myList As New System.Collections.ArrayList()

· The Add Method: Once instantiated, you can add items to the ArrayListusing the Add method, as ​follows:

Dim myWidget As New Widget()

myList.Add(myWidget)

The list of objects managed by the ArrayList is a zero-based collection. Zero-based means that the first object added to the list is assigned the index zero and every subsequent object to be added is assigned to the next available index.

· The Remove and RemoveAt Methods: You can remove an item from a collection by using the Remove and RemoveAt methods. The Remove method requires a reference to an object contained within the collection as a parameter and removes that object from the collection. For example:

Dim myWidget As New Widget()

Dim myList As New System.Collections.ArrayList()

' Adds the Widget to the collection

myList.Add(myWidget)

' Remove the Widget from the collection

myList.Remove(myWidget)

If you attempt to remove an object that is not contained by a collection, you will not receive an error, but the line will be ignored.

The RemoveAt method allows you to remove an object at a particular index. For example:

Dim myList As New System.Collections.ArrayList()

' Adds three widgets to the collection

Dim X As Integer

For X = 1 to 3

 Dim aWidget As New Widget()

 myList.Add(aWidget)

Next

' Removes the widget at index 1

myList.RemoveAt(1)

· The Count Property

The Count property returns the number of items in a collection. Because the collection index is zero-based, the Count property will always return one greater than the upper bound of the array.

Other Types of Collection Classes: The System.Collections namespace contains several other collection classes that you can use to organize groups of objects. These classes provide additional or specialized functionality that is unavailable in the ArrayList class.

	Members of System.Collections

	Class
	Description

	BitArray
	Manages a compact array of bits (1 and 0)

	CollectionBase
	Serves as a base for implementing your own collection class; provides much of the back-end functionality required for collections

	Hashtable
	Represents a collection of key-and-value pairs that are organized based on the hash code of the key

	Queue
	Manages a group of objects on a first-in, first-out basis

	SortedList
	Organizes a group of objects and allows you to access those objects either by index or by a key value

	Stack
	Manages a group of objects on a first-in, last-out basis

5. Summary
· Constants and enumerations make your code less error prone and easier to read and maintain. They do this by substituting friendly names for frequently used values. You define a constant with the Const (const) keyword. The Enum (enum) keyword is used to declare an enumeration. Constants can be of any data type. Enumerations must be of a numeric integral type.

· Arrays can be one-dimensional or multidimensional. Multidimensional arrays can be either rectangular or jagged. In rectangular arrays, every member of each dimension is extended into the other dimensions by the same length. In jagged arrays, individual members of one dimension can be extended into other dimensions by different lengths. In either case, the more dimensions, the more complex the array.

· Collections allow you to manage groups of objects, which can be of the same type or of different types. There are several types of collections, and all are available in the System.Collections namespace. System.Collections.ArrayList provides the basic functionality suitable for most applications.

· You can use the For Each (foreach) statement to iterate through the members of an array or a collection, but you cannot alter members using this statement. To loop through an array or a collection and alter the members, use the For…Next (for) statement.

Unit 7

Flow-Control Statements

1. Introduction

2. If …then, else end if

3. For …next

4. Select case end select

5. Which… end select

6. Do…loop

7. Do which… Loop
8. Do Until …Loop
9. Summary
1. Introduction
Selection is the second of the 3 basic constructs of programming. These are:

– SEQUENCE

– SELECTION

– ITERATION

Why do we need to use Selection?

• We don’t always want to do things in exactly the same way.

• Eg: when leaving a room there is no point in attempting to turn a light off if it was never

on in the first place.

• Our actions are determined by specified criteria i.e.: we have to make a decision about whether we need to operate the light switch or not.
[image: image22.png]Yes

“Turm off light

=T

Leave room

FINISH

How do we use Selection?

• As in most languages there are 2 options provided in VB for implementing a selection. These are:

• IF - (IF BLOCK) selects the path to be executed by evaluating the CONDITION(S) to TRUE or FALSE

• SELECT CASE - (covered next week) allows for selection between multiple paths depending on possible values from the test expression.

1. If …then, else end if

These functions are considered bad programming style because of functionality, optimization and readability issues. All conditions and branches of If / Switch / Choose are always executed resulting in longer execution time and possible unwanted side effects. Switch and Choose may return an unwanted Null. Use Select Case or If. End If instead.

Single-line If. Then statement. An If. Then(..Else) construct is on a single line. To make your program more readable, split the construct to multiple lines.

Multiple statements on one line. There is more than one statement on a single line, separated with a colon (:). To make your program more readable, write only one statement on one line.

Dim AdjustedIncome, TaxDue As Double
If AdjustedIncome <= 27050 Then
' 15% tax bracket
TaxDue = AdjustedIncome * 0.15
ElseIf AdjustedIncome <= 65550 Then
' 28% tax bracket
TaxDue = 4057.5 + ((AdjustedIncome - 27050) * 0.28)
ElseIf AdjustedIncome <= 136750 Then
' 31% tax bracket
TaxDue = 4057.5 + ((AdjustedIncome - 65550) * 0.31)
ElseIf AdjustedIncome <= 297350 Then
' 36% tax bracket
TaxDue = 4057.5 + ((AdjustedIncome - 136750) * 0.36)
Else
' 39.6% tax bracket
TaxDue = 4057.5 + ((AdjustedIncome - 297350) * 0.396)
End If

2. For …next

The for…next loop structure is used to execute a block of statement for a specific number of times. The for loop uses the next statement which either increments or decrements the value of a variable during the execution of the loop. For example:

Dim x as integer

For x=0 to 10

Msgbox (“hello”)

’Display message box 11 times to the user.

Next

3. Select case end select

The select-case construct is used to compare the same expression to several different values. You can substitution a complex if-then-else construct with the select case construct. Consider the following example:

Dim x as integer =200

Select case x

Case 100

Msgbox (“book”)

Case 200

Msgbox (“book centurary”)

Case else

Msgbox (“An invalid number entered”)

End select

4. Which… end select

The while-end while loop structure is used to execute a block of statement for indefinite number of times, depending on a condition. The statement always checks the condition before executed again. For example:

Dim x as integer =200

 Which x<200

Msgbox (“value of x:” & x)

X=x+10

End which

5. Do…loop

The Do…loop structure executes a block of code repetitively. You can use the keyword with the do. Without giving condition it will go to infinite loop. Loop construct, as shown below:

Dim x as integer =100

Do

Msgbox (“cool”)

Loop

If we want to work properly in do…loop we will provide condition, for that we will use do which loop.

6. Do which… Loop
The Do…loop structure executes a block of code repetitively. You can use the keyword with the do. Do-while loop structure checks whether the condition is true before executing the block of the statements within the loop. Loop construct, as shown below:

Dim x as integer =100

Do while x<200

Msgbox (“value of x:” & x)

X=x+10

Loop

7. Do until …loop

Use the until keyword with the do-loop structure. An example is shown below:

Dim x as integer =100

 Do until x =200

Msgbox (“cool”)

X=x+10

Loop

8. Summary
· All conditions and branches of If / Switch / Choose are always executed resulting in longer execution time and possible unwanted side effects. Switch and Choose may return an unwanted Null. Use Select Case or If. End If instead.

· Single-line If. Then statement. An If. Then(..Else) construct is on a single line. To make your program more readable, split the construct to multiple lines.

· Multiple statements on one line. There is more than one statement on a single line, separated with a colon (:). To make your program more readable, write only one statement on one line.

· The for…next loop structure is used to execute a block of statement for a specific number of times.
· Use the until keyword with the do-loop structure.

Unit 8

Functions

1. System define functions

a. String

b. Number

c. Date

2. User define functions

3. Summary

1. System define functions
A. String

A big part of working with strings is comparing one to another to see if they match. There are two ways to compare strings - case sensitive and case insensitive.

Case sensitive is a Binary comparison.
The string "VB" is not equal to the string "vb".

Case insensitive is a Text comparison.
The strings "VB" and "vb" are equal.

By default, VB .net will use the Binary method to compare strings. This can be changed for individual modules by placing an Option Compare Text statement in the general declarations section. Option Compare Binary is also a valid statement, but it's never necessary to write this out.

(1) LCASE and UCASE

These two functions will convert strings to all lower or all upper case. This might be useful if you need to compare strings. In the below example, the user is typing their two-letter state abbreviation into a Text Box.

Private Sub txtState_Change()

 Dim sStAbbr As String

 sStAbbr$ = "CA"

 If UCase$(txtState.Text) = sStAbbr$ Then

 MsgBox "So you live in California? I'm sorry to hear that."

 End If

End Sub

(2) Trim, LTrim, and RTrim functions

These functions remove leading (LTrim) or trailing (RTrim) spaces from a string. It won't affect any spaces between words. Trim simply accomplishes both LTrim and RTrim. Users may inadvertantly type spaces into a Text Box, and you'd use these functions to account for that, but the largest use of Trim is with fixed-length strings, user-defined Types, and Random Access Files.

'sResult$ = "excel"

sResult$ = LCase(Trim(" EXCEL"))

Here, we've used a function as an argument for another function. This is commonly done and an efficient way to program.

(3) Len

This function gets how many characters long the string is. All characters are counted including spaces and punctuation.

'iResult% = 17

Dim sAddress As String, iResult As Integer

sAddress$ = "345 St. James St."

iResult% = Len(sAddress$)

(4) Left and Right

Used to extract a certain number of characters from the leftmost or rightmost portion of a string. The function requires two arguments: the original string and the number of characters to extract.

Dim sFileName As String, sFileTitle As String

Dim sFileExt As String

sFileName$ = "command.com"

'sFileTitle$ = "command"

sFileTitle$ = Left(sFileName$, Len(sFileName$) - 4)

'sFileExt$ = "com"

sFileExt$ = Right(sFileName$, 3)

The Len function is used in the first example as an argument for the Left function to calculate the number of characters we need without the dot and a 3-letter extension. The second example is simpler, we're just getting the last three characters of the string

(5) Mid function and Mid statement

You'll need the Mid function if you want to extract characters from the middle of a string. We need three arguments here: The original string, the place to start extracting, and the number of characters to extract.

The Mid statement not only extracts the characters, but replaces them with the text you specify. Since this is a statement (not a function), you won't get a result, rather the action is just completed for you.

Public Function EveryOtherCap(ByRef sInput As String) As String

 Dim i As Integer, sCurrentChar As String

 For i% = 1 To Len(sInput$)

 sCurrentChar$ = Mid(sInput$, i%, 1) 'function

 If i% Mod 2 = 0 Then

 Mid(sInput$, i%, 1) = LCase(sCurrentChar$) 'statement

 Else

 Mid(sInput$, i%, 1) = UCase(sCurrentChar$)

 End If

 Next i%

 EveryOtherCap = sInput$

End Function

'Calling the function

Dim myString As String

myString$ = "i want to be vb programmer"

'Converts myString to "I WaNt tO Be vB PrOgRaMmEr"

myString$ = EveryOtherCap(myString$)

(6) Instr Function

InStr searches for strings within strings. Its first argument is the position in the string to start searching. The second argument is the string to search. The third is the string to search for and the last argument is whether or not you want a case-sensitive search. (0 for yes, 1 for no). The first and last arguments are not required and for simple searches you will omit them.

InStr is a function and will return the position of the first occurence of the string. If the string is not found, the function returns 0.

Here's two useful functions which extract the left-most or right-most characters from a string based on a certain character. If you read the example on the Left and Right functions, you'll notice this a better approach for disecting a file name because it accounts for extensions which are not 3 letters.

Public Function RightOfChar(ByVal sInput As String, _

 ByVal sChar As String) As String

 On Error Resume Next

 Dim iPos As Integer

 'Get position of character

 'First and last arguments omitted

 iPos% = InStr(sInput$, sChar$)

 RightOfChar = Right(sInput$, Len(sInput) - iPos%)

End Function

Public Function LeftOfChar(ByVal sInput As String, _

 ByVal sChar As String) As String

 On Error Resume Next

 Dim iPos As Integer

 iPos% = InStr(sInput$, sChar$)

 LeftOfChar = Left(sInput$, iPos% - 1)

End Function

'Using the functions

Dim sFileName As String, sFileExt As String

Dim sFileTitle As String

sFileName$ = "index.aspl"

sFileExt$ = RightOfChar(sFileName$, ".")

sFileTitle$ = LeftOfChar(sFileName$, ".")

(7) Space function

This function by itself produces a certain number of spaces. It's best use is to clear fixed-length strings.

sRecord$ = Space(128)

(8) String function

This function is used for producing a string with a certain number of repeating characters. It's two arguments are the number of characters and the character code to repeat.

sResult$ = String(10, 65)

65 is the character code for upper case "A", therefore the result of this function is "AAAAAAAAAA".

(9) Character Codes

Strings are made up of individual characters, or bytes. Each of these characters, as well as the non-characters keys (like Enter, Backspace, and Tab) has a code somewhere between 0 and 255. When the user types at the keyboard, these codes are automatically sent to the appropriate control's Key press event in the form of the Key ASCII integer argument and to the Key Up and Key Down events in the form of the Key Code integer argument.

(10) StrComp function

This function compares two strings, and tells you if they are equal, or if one is less than or greater than the other. This probably sounds odd - how can one string be less than another? It's all judged by the ASCII values of the characters. Upper case letters have a lower ASCII value (65-90) than lower case letters (97-122). ASCII values of numeric characters (48-57) are less than all letters. If the first characters of each string being compared are equal, the second character is then compared.

"Bob" is less than "bob"

"123Go" is less than "Go123"

"John" is greater than "Jim", but less than "jim"

The function returns -1 if the first string is less than the second, 1 if the first string is greater than the second, and 0 if they match.

If Not StrComp("some string", "Some String", vbTextCompare) Then

 'Strings match

End If

(11) StrConv function

This function converts a string to upper, lower, or proper case. Since we already have the UCase and LCase functions, the best use of StrConv is to convert to proper case, which means the first letter of every word in the string will be capitalized.

Dim myString As String

myString$ = "my brain hurts"

'Returns "My Brain Hurts"

myString$ = StrConv(myString$, vbProperCase)

StrConv can also make conversions from the 8-bit, 256-character ASCII character set to the 65,536-character UNICODE standard and vice versa. Unicode is a 16-bit character set which is large enough to hold all of the characters of all of the world’s languages.

(12) Asc function

Use this function to get a character's code. Normally, you would use a single character enclosed in quotes or one character resulting from another function, but using a multi-character string doesn't cause an error; the function will only look at the first character of the string.

'iResult% = 80

sCity$ = "Providence"

iResult% = Asc(sCity$)

(13) Chr function

Using this function is like using one literal character. However, you can't type some characters. You may need to add carriage return-line feeds to your strings. You'd do this with the combination of Chr$(13) & Chr$(10)

'Display the message on two lines

MsgBox "First line of text" & _

 Chr$(13) & Chr$(10) & "Second line of text"

Note: You can use VB's built-in constant vbCrLf instead of these two characters.

VB interprets double quotes in a code window as the beginning of a string. To add double quotes within a string, use Chr(34).

Dim msg As String

msg$ = "We called her " & Chr(34) & _

 "the mother-in-law from hell" & Chr(34)

(14) Concatenation

Note that strings can be glued together with an ampersand (&). The ampersand is called the concatenation character. Concatenation is the combining of strings, string variables, string properties, and string functions to create one longer string.

b. Number

Manipulating numbers is a large part of programming. If you're one of those people who is not good with numbers, then I might suggest that programming is not for you.

Basic arithmetic with VB .net can be done with regular numbers, variables, constants, numeric properties, and even numeric strings.

(1) Round function

simple function for rounding numbers in vb .net function.

'iResult% = 0.667

iResult% = Round(2 / 3, 3)

The second argument is the number of places to round to...When rounding to a whole number, use 0 or just leave it out, it's an optional argument.

(2) Int and Fix functions

Use Int to drop the fractional part of a positive number.

'iResult% = 5

iResult% = Int(5.5)

Use Fix to drop the fractional part of a negative number.

'iResult% = 12

iResult% = Fix(-12.9)

Using Int on a negative number still works the same way, returning the next lowest whole number, but that might not be the result you want.

'iResult% = 24

iResult% = Int(-23.6)

(3) Abs function

Abs (absolute value) is useful for getting the difference between two numbers without worrying about which is larger. In other words, the function converts negative values to positive. Positive numbers are unaffected by the function.

'Find the left-right distance

'between two images.

Dim iDistance As Integer

iDistance% = Abs(imgPlayer.left - imgExit.left)

(4) Val function

Val takes a numeric string and converts it to the appropriate numeric data type, enabling you to use the string in calculations.

'Increment a Label by 1

lblTotal.Caption = Val(lblTotal.Caption) + 1

(5) Rnd Function

A great function which generates a random decimal between 0 and 1.

Randomize

iResult% = Int(Rnd * 100) + 1

This formula produces a random whole number between 1 and 100. Precede the formula with the Randomize statement to get a good mix of random numbers.

(6) Sgn Function

This function will determine the sign of a number and returns -1 if negative, 0 if zero, and 1 if positive.

'You might replace a line like this...

If iNumber% <> 0 Then

'...with this

If Sgn(iNumber%) Then

(7) Sqr Function

Sqr gets the square root of a number. The function returns a Double.

'dResult# = 4.795831523313

dResult# = Sqr(23)

This number is rounded off to 12 decimal places because I can't write the entire number here.

c. date

Before trying to manipulate dates and time, you should know that dates are stored as serial numbers where:

0 represents Dec. 30, 1899

1 represents Dec. 31, 1899

2 represents Jan. 2, 1900, etc.

Whoever decided that time would begin on Dec. 30, 1899, I don't know, but this doesn't mean you can't use dates prior to this because you can use negative values as well:

-1 represents Dec. 29, 1899

-2 represents Dec. 28, 1899

-3 represents Dec. 27, 1899, etc.

Any decimal portion of the serial number represents the time of day. For instance:

2.5 would be Jan. 1, 1900 12:00:00 PM

2.25 would be Jan. 1, 1900 6:00:00 AM

I am writing this at 36355.684

(1) Now function

Serial numbers don't mean anything to the user so they must be formatted into some kind of standard way of displaying dates. Windows will do this automatically for you when you use the Now function.

Now takes no arguments and accesses the current system time. Although internally stored as a serial number, the result of Now will be a string formatted according to the user's Control Panel.

MsgBox "The current date and time is " & Now

If you want to use a specific date/time format for displaying the system time, use the Format function.

MsgBox "The current date and time is " & _

 Format(Now, "dddd mmmm d yyyy")

(2) Date Function

The Date function is similar to Now but does not return the time portion. The formatting is also done automatically, but not by the Control Panel. This function always returns a 10-character string (mm-dd-yyyy). In other words, these two lines of code are equivalent:

MsgBox "The current date is " & Format(Now, "mm-dd-yyyy")

MsgBox "The current date is " & Date

(3) Time Function

The Time function returns the time portion of Now and automatically formats it as an 8-character string (hh:mm:ss). These two lines of code are equivalent:

MsgBox "The current time is " & Format(Now, "hh:mm:ss")

MsgBox "The current time is " & Time

This function is useful for adding a real-time clock to a Form. Draw a Label (lblClock) and a Timer (tmrClock). Set the Timer's Interval property to 500 (half second) and add this code:

Private Sub tmrClock_Timer()

 If lblClock.Caption <> Time Then

 lblClock.Caption = Time

 End If

End Sub

(4) Date and time Statement

You can set the system date with the Date statement or the system time with the Time statement

Date = "7/14/99"

Time = "11:22:00 AM"

You would normally use a string date or time expression in one of the accepted formats, but a serial number would work as well.

(5) IsDate function

The IsDate function checks to see if an expression (or variable or property) is capable of representing a date or time. Both numeric and string expressions can qualify. This is a Boolean function which returns True if the expression can be converted to the Date data type.

If IsDate(2603.852) Then

 'IsDate Returns True

End If

If IsDate("3/4/62") Then

 'IsDate Returns True

End If

If IsDate(App.Path) Then

 'IsDate Returns False

End If

(6) More Date and Time functions

The following functions will return certain parts of a date. You supply one argument, the date expression.

'Second function returns an integer between 0 and 59

iResult% = Second(0.324) 'iResult% = 34

'Minute function returns an integer between 0 and 59

iResult% = Minute(0.324) 'iResult% = 46

'Hour function returns an integer between 0 and 23

iResult% = Hour(0.324) 'iResult% = 7

'(The number -45103 represents July 4, 1776)

'Day function returns an integer between 1 and 31

iResult% = Day(-45103) 'iResult% = 4

'Weekday function returns an integer between 1 and 7

'where 1 is Sunday and 7 is Saturday

'Use the built-in VB constants instead

'vbSunday, vbMonday, vbTuesday, etc.

If Weekday(-45103) = vbThursday Then

 MsgBox "This country was born on a Thursday"

End If

'Month function returns an integer between 1 and 12

iResult% = Month(-45103) 'iResult% = 7

'Year function returns an integer between 100 and 9999

iResult% = Year(-45103) 'iResult% = 1776

(7) DatePart function

You can also try the DatePart function instead of any of the above functions. This function has 2 arguments, the first being a string corresponding to what part of the date you want returned and the other being the date expression. The DatePart function can also return the quarter, the day of the year, and the week of the year.

'Returns an integer between 1 and 4

iResult% = DatePart("q", -45103) 'iResult% = 3

'Returns an integer between 1 and 366

iResult% = DatePart("y", -45103) 'iResult% = 186

'Returns an integer between 1 and 53

iResult% = DatePart("ww", -45103) 'iResult% = 27

Other acceptable strings to use for the first argument are:

"yyyy" - identical to using Year function

"m" - identical to using Month function

"d" - identical to using Day function

"w" - identical to using Weekday function

"h" - identical to using Hour function

"n" - identical to using Minute function

"s" - identical to using Second function

If you're curious, the lowest serial number which can be used is -657434 (Jan. 1, 100) and the highest is 2958465 (Dec. 31, 9999).

(8) Date Serial function

The Date and Time functions the return value will be automatically formatted, so use the Format function in conjunction with the DateSerial function to force a numeric display.

MsgBox Format(DateSerial(1963, 11, 22),"general number")

(9) TimeSerial function

The TimeSerial function will return the decimal which corresponds to a particular time of day. You'll supply the hour, minute, and second. Again, the return value is automatically formatted, so we need the Format function. This example returns the decimal which represents 2:32 PM and rounds it to 4 decimal places at the same time.

MsgBox Format(TimeSerial(14, 32, 0),".####")

(10) DateDiff function

The DateDiff function can tell you the difference between two dates. Not just the number of days, but any date or time interval. There are three required arguments, the string corresponding to the interval (these are the same strings listed above for use with the DatePart function), and the two dates to compare. Here's an example which uses DateDiff, Now, and DateSerial to give the user a "countdown to the year 2000" message.

MsgBox "There are " & DateDiff("d", Now, DateSerial(2000, 1, 1)) & " days until the year 2000"

(11) DateAdd function

The DateAdd function can add or subtract date or time intervals to a particular date. The first argument is the string, which represents the interval (same strings as DatePart and DateDiff), the second is the number of intervals to add or subtract (positive numbers for future dates, negative numbers for past dates), and the third is the date to perform the calculation on. The below example produces a date one month prior to today.

MsgBox DateAdd ("m", -1, Now)

The DateAdd function is very intelligent. It knows about leap years and it knows that all months don't have the same number of days. So you can be sure that if you're trying to find the date one month after Jan. 31, the function will return Feb. 28 on non-leap years and Feb. 29 on leap years.

2. User define functions
Procedures are made up of series up of series of vb .net statement that, when called are executed. Declaring a function is much like declaring a sub procedure, except than you use the keyword function instead of sub procedure and specify the return type and its value.

Module m1

Function f(I as integer) as integer

Return I*I

End function

Sub Main()

Msgbox F(10)’it will return 100 in a message box

End sub

End module

3. Summary
1. Procedures are made up of series up of series of vb .net statement that, when called are executed. Declaring a function is much like declaring a sub procedure, except than you use the keyword function instead of sub procedure and specify the return type and its value
2. By default, VB .net will use the Binary method to compare strings. This can be changed for individual modules by placing an Option Compare Text statement in the general declarations section. Option Compare Binary is also a valid statement, but it's never necessary to write this out.
Unit 9

Using Controls and Components

1. Introduction of user control

2. Objectives

3. Working with Controls

4. Add a control to your application

5. Edit Control

6. Setting the Control Tab Order

7. Interacting with the Mouse
8. Summary
1. Introduction of user control
Controls are the second element of the visual interface. These graphical tools, also known as Windows Forms controls, are used to create or enhance the functionality of an application. Tools are added to the form from the Visual Studio Toolbox. Some, such as Button and TextBox, are designed to receive user input and carry out basic tasks associated with user interaction. Others are specialized components designed to manage complex interactions with other parts of the application. Components are similar to controls in that they are existing units of code that encapsulate specific functionality. The main difference between components and controls is that controls have a visual representation, whereas components do not. This lesson provides information on using controls and components when building a user interface.
2. Objectives
· Define the role of controls in your application

· Explain the difference between controls and components

· Explain how to set the control tab order

· Describe which controls can contain other controls and how they are used

· Describe docking and anchoring, and explain their use with controls

· Explain how to dynamically add controls to your form

· Describe the process for adding controls to the Toolbox

· Describe how to create event handlers for controls

· Explain what an extender is and how to use one

3. Working with Controls
The Visual Studio Toolbox contains a variety of preset controls that you can use to develop your applications. Controls are hosted in forms and implement most of the actual functionality in the user interface. Take the Button control, for example. It can be placed on a form and will be displayed, usually with a title that provides some kind of information as to its function. When the user clicks the button with the mouse, an event handler responds to the click and causes code to execute. Other controls, such as the Label control and PictureBox control, are primarily used to display data to the user. Controls such as TextBox and ListBox serve a dual purpose: both display information and allow the user to input information.

You can add controls to the forms in your application by using the designer. The designer displays the form you are composing in a graphical state, similar to how the form will look at run time. The Toolbox allows you to select a control with the mouse and add it to the form surface in the designer. All the code associated with the control is also added to your application.

4. Add a control to your application
1. From the Toolbox, select the control you want to add.

2. Click the form in the location where you want the control to appear. While holding down the left mouse button, draw the control to the size you want it to be on the form.

Alternatively, you can drag the control from the Toolbox onto the form, or double-click the desired control in the Toolbox. The control will be added to the form with default values for size and position, if appropriate.

3. Use the mouse to set the size and position of the control as desired. You can also use the arrow keys to position the control.

The Properties window displays the properties of the selected control and allows you to edit them. Setting a property during the design stage creates its default value, which can still be changed in the course of code execution. Moving the control on the form in the designer sets the position properties of the control. Although you can accomplish these same tasks in code, the designer allows you to rapidly set control start-up properties rather than spend valuable development time hand-​coding values.

5. Edit Control
To edit properties of a control

1. Right-click a control and select Properties. You can also left-click the control and press F4, or choose Properties from the View menu.

2. Edit the value in the appropriate property box.

To edit properties for multiple controls

1. Click and drag the mouse over the controls to select the controls you want to edit.

Alternatively, hold down the Ctrl key and click the controls you want to edit. The Properties window displays the properties that are common to all controls selected.

2. Edit the value in the appropriate property box.

Components are also in the Toolbox. Components are similar to controls in that they are pre-assembled units of functionality that you can incorporate into your application. The primary difference between controls and components is that components are not visible in the user interface. An example of a component is the Timer, which raises an event at a specified interval. Because they have no visual interface, components are not added to the form when you add them to your application in the designer. Instead, they are added to the component tray, a graphical region near the bottom of the designer that allows you to manipulate the properties of your application’s non-visual components. Components are added to an application in the same way controls are added; likewise, the Properties window is used to edit component properties.

6. Setting the Control Tab Order
The users of your application can use the Tab key to quickly move the focus from one control to another. The tab order sets the order in which controls on the form receive the focus. Tab order is specified by the TabIndex property. To change the order in which a control receives the focus, simply set the TabIndex property to a different value. Lower values receive the focus first and proceed numerically through higher values. In the event of a tie between TabIndex values, the focus first goes to the control closest to the front of the form. You can bring a control to the front or send it to the back of the form by right-clicking it and choosing Bring To Front or Send To Back, respectively.

Visual Studio contains a tool for setting the tab order. Under the View menu, choose Tab Order. A box containing a number appears inside each control on the designer. To set the tab order, all you have to do is click the controls in the order that you want them to receive the focus.

To set the tab order using the TabIndex property

1. In the designer, select each control capable of receiving the focus.

2. In the Properties window, set the TabIndex property to an appropriate value. The focus passes from control to control in the order of lowest to highest value.

To set the tab order with Visual Studio .NET

1. From the View menu, choose Tab Order. Boxes containing the current tab order appear in each control.

2. Click each control in the desired tab order.

3. From the View menu, choose Tab Order again to resume editing.

Using the GroupBox and Panel Controls

The GroupBox and Panel controls are similar. Both provide a logical and physical grouping of controls. These controls can be thought of as physical subdivisions of a form. Changes in the properties of a Panel or GroupBox affect all the controls contained within. Controls contained within a Panel or GroupBox can be moved and repositioned as a single unit during the design stage. At run time, you can disable the entire group by setting the Enabled property of the containing control to false.

The GroupBox control provides a caption for labeling the group of controls within it. You can set this caption using the Text property. The Panel control is a scrollable container, but it does not provide a caption. By setting the AutoScroll property to true, you enable scroll bars within the panel.

Using the TabControl Control

The TabControl control is a way to group controls on a set of tabs, rather like files in a filing cabinet or dividers in a notebook. The TabControl is a host for a number of TabPages that host other controls. An example of the TabControl might be property pages for an application, with each tab representing properties related to a specific component of the application.

The most important property of TabControl is TabPages. The TabPages property is a collection of TabPage controls, each with its own set of properties. A collection is a logical organization of objects similar to an array.

Using the Dock Property

Docking refers to attaching your control to the edge of a parent control. The parent control is usually a form, but it can include other container controls such as the Panel or Tab control. An example of a docked control might be a menu bar at the top of a form.

7. Interacting with the Mouse
Windows Forms controls are capable of raising events that signal interaction with the mouse. Forms raise events in response to mouse clicks, for example, or when the mouse pointer simply passes over a control.

The Click and DoubleClick events are raised by controls in response to mouse clicks and double-clicks, respectively. These events are generally used to execute code based on a user choice, such as code executed when a user clicks a button. They pass an instance of the EventArgs class to their event handlers, along with a reference to the sender.

Controls are also capable of raising events in response to interaction with the mouse pointer. Depending on their actual type, controls might be capable of raising the mouse-related event.

	. Mouse-Related Events

	Event
	Description
	Type of EventArgs

	MouseEnter
	This event is raised when the mouse pointer enters a control.
	System.EventArgs

	MouseMove
	This event is raised when the mouse pointer moves over a control.
	System.MouseEventArgs

	MouseHover
	This event is raised when the mouse pointer hovers over a control.
	System.EventArgs

	MouseDown
	This event is raised when the mouse pointer is over a control and a button is pressed.
	System.MouseEventArgs

	MouseWheel
	This event is raised when the mouse wheel moves while the control has focus.
	System.MouseEventArgs

	MouseUp
	This event is raised when the mouse pointer is over a control and a button is released.
	System.MouseEventArgs

	MouseLeave
	This event is raised when the mouse pointer moves off a control.
	System.EventArgs

The MouseEnter, MouseHover, and MouseLeave events represent notification that the mouse pointer is in the region of a control. They pass relatively little information to their event handlers. By contrast, the MouseMove, MouseDown, MouseWheel, and MouseUp events can be used to implement more substantial interactions between the user and the interface. Each of these events passes an instance of Mouse​EventArgs to the event handler.

	MouseEventArgs Properties

	Property
	Description

	Button
	This property returns which, if any, mouse buttons are pressed.

	Clicks
	This property returns the number of times the mouse button was clicked.

	Delta
	This property returns the number of notches the mouse wheel rotated. This number can be either positive or negative, with positive representing forward rotation and negative representing reverse rotation. Each notch adds or subtracts 120 from the value returned.

	X
	This property returns the x coordinate of a mouse click.

	Y
	This property returns the y coordinate of a mouse click.

8. Summary
· You can set the tab order of the controls on your form by setting the TabIndex property or by choosing Tab Order from the View menu and clicking on your controls to set the tab order.

· The Dock and Anchor properties implement automatic resizing or repositioning of the controls on your form. Setting the Dock property fixes a control to an edge of your form. Setting the Anchor property specifies whether your control remains fixed, floats, or changes size in response to the form resizing.

· You can use the controls collection of a form to dynamically add controls at run time. To add a control, you must declare and create an instance of it, and you must add it to the controls collection of the appropriate form.

· Additional controls can be added to the Toolbox by right-clicking the appropriate section of the Toolbox and then selecting the appropriate control, or by browsing to the DLL that contains that control.

· You can create methods that handle events for controls in the same manner you create methods that handle events for forms. These methods execute whenever the event they handle is raised.

· Extender provider components allow you to add more properties to the controls on a form. At run time, these properties are commonly used to provide information to the user, such as a Tool Tip or Help.
Unit 10

Validating User Input

1. Introduction

2. Objectives

3. Field-Level Validation

4. Using Events in Field-Level Validation

5. Validating Characters

6. Handling the Focus

7. Summary

1. Introduction

In most applications, the user enters information for the application through the user interface. Data validation ensures that all data entered by a user falls within acceptable parameters before proceeding with program execution. For example, you might have a field where a user enters a zip code as part of an address. Using validation, you could verify that the field contained five and only five characters, all of which were numeric, before proceeding. Validating user input reduces the chance of an input error and makes your application more robust.

Form-level validation verifies data after the user has filled in all the fields. For example, a user might be directed to fill in a name, address, and phone number, and then click OK. With form-level validation, all the fields on the form would be validated when the user clicked OK.

Field-level validation, on the other hand, verifies that the data in each field is appropriate. For example, if a user fills in a field that holds a phone number, field-level validation can verify that the number contains a valid area code before moving to the next field. As each digit is entered, control events can verify that only numbers are entered.

2. Objectives
· Explain the difference between form-level and field-level validation

· Direct the focus using control methods and events

· Implement form-level validation for your form

· Implement field-level validation for your form

3. Field-Level Validation
You might want to validate data as it is entered into each field. Field-level validation gives you control over user input as it occurs. In this section, you will learn how to use control events to validate user input and how to use TextBox control properties to help restrict input to appropriate parameters.

Using TextBox Properties

The TextBox control is the most common control for user input. Several TextBox control properties let you restrict user input values to only those that are acceptable. Some of these properties include

· MaxLength
· PasswordChar
· ReadOnly
· MultiLine
Setting the MaxLength Property

The MaxLength property limits the number of characters that can be entered into a text box. If the user attempts to exceed the number returned by MaxLength, the text box will accept no further input and the system will beep to alert the user. This property is useful for text boxes that always contain data of the same length, such as a zip code field.

Using the PasswordChar Property

The PasswordChar property allows you to hide user input at run time. For example, if you set the PasswordChar property to an asterisk (*), the text box will display an asterisk for each character, regardless of user input. This behavior is commonly seen in password logon boxes.

Although an asterisk is the character most commonly used for passwords, you can choose any valid character—semicolons or ampersands, for example. The Text property value is always set to the value the user enters, regardless of the password character.

Setting the ReadOnly Property

The ReadOnly property determines whether a user can edit the value displayed in a text box. If ReadOnly is set to true, the text cannot be changed by user input. If ReadOnly is set to false, the user can edit the value normally.

Using the MultiLine Property

The MultiLine property determines whether a text box can accept multiple lines. When set to true, the user can enter multiple lines in the text box, each separated by a carriage return. The individual lines are stored as an array of strings in the TextBox.Lines collection and can be accessed by their index

4. Using Events in Field-Level Validation
Field-level keyboard events allow you to immediately validate user input. Controls that can receive keyboard input raise the following three keyboard events:

· KeyDown
· KeyPress
· KeyUp
KeyDown and KeyUp

The KeyDown and KeyUp events are raised when a key is pressed and a key is released, respectively. The control that has the focus raises the event. When these events are raised, they package information about which key or combination of keys were pressed or released in an instance of KeyEventArgs, a class that describes the key combination. A method that handles the KeyDown or KeyUp event must include a KeyEventArgs parameter in its signature.

	KeyEventArgs Properties

	Property
	Description

	Alt
	Gets a value describing whether the Alt key was pressed

	Control
	Gets a value describing whether the Ctrl key was pressed

	Handled
	Gets or sets a value indicating whether the event was handled

	KeyCode
	Returns an enum value representing which key was pressed

	KeyData
	Returns data representing the key that was pressed, together with whether the Alt, Ctrl, or Shift key was pressed

	KeyValue
	Returns an integer representation of the KeyData property

	Modifiers
	Gets the modifier flags for the event, indicating what combination of Alt, Ctrl, or Shift keys was pressed

	Shift
	Gets a value describing whether the Shift key was pressed

The KeyUp and KeyDown events are most commonly used for determining if the Alt, Ctrl, or Shift key has been pressed. This information is exposed through properties in the KeyEventArgs reference that is passed to the handler. The KeyEvent​Args properties—Alt, Control, and Shift—are properties that return a Boolean value, which indicates whether those keys are down. A value of true is returned if the corresponding key is down, and false is returned if the key is up. The following code demonstrates a KeyUp event handler that checks whether the Alt key is pressed:

Private Sub TextBox1_KeyUp(ByVal sender As Object, ByVal e As _

 System.Windows.Forms.KeyEventArgs) Handles TextBox1.KeyUp

 If e.Alt = True Then

 MessageBox.Show("The ALT key is still down")

 End If

End Sub

You also can use the KeyEventArgs.KeyCode property to examine the actual key that triggered the event. This property returns a Key value that represents the key that was pressed (in the case of a KeyDown event) or released (in the case of a KeyUp event). The following code shows a simple event handler that displays a message box containing a string representation of the key that was pressed:

Private Sub TextBox1_KeyDown(ByVal sender As Object, ByVal e As _

 System.Windows.Forms.KeyEventArgs) Handles TextBox1.KeyDown

 MessageBox.Show(e.KeyCode.ToString())

End Sub

KeyPress

When a user presses a key that has a corresponding ASCII value, the KeyPress event is raised. Keys with a corresponding ASCII value include any alphabetic or numeric characters (alphanumeric a–z, A–Z, and 0–9), as well as some special keyboard characters, such as the Enter and Backspace keys. If a key or a key combination does not produce an ASCII value, it will not raise the KeyPress event. Examples of keys that do not raise this event include Ctrl, Alt, and the function keys.

This event is most useful for intercepting keystrokes and evaluating them. When this event is raised, an instance of KeyPressEventArgs passes to the event handler as a parameter. The KeyPressEventArgs instance contains information about the keystroke that can be used for validating user input. The KeyPressEventArgs.KeyChar property contains the ASCII character represented by the keystroke that raised the event. If you want to make sure that the key pressed was a numeric key, for example, you can evaluate the KeyChar property in your KeyPress event handler. The KeyPressEventArgs.Handled property can be used to set whether this event has been handled.

5. Validating Characters
The Char data type contains several Shared (static) methods that are useful for validating characters trapped by the KeyPress event. These methods include

· Char.IsDigit

· Char.IsLetter

· Char.IsLetterOrDigit

· Char.IsPunctuation

· Char.IsLower

· Char.IsUpper

Each of these methods, with their descriptive names, evaluates a character and returns a Boolean value. The Char.IsDigit function returns true if a character is a numeric digit and false if it is not. The Char.IsLower function returns true if a character is a lowercase letter, false otherwise. The other methods behave similarly. The following code uses the Char.IsNumber method to test whether the key pressed was a numeric key:

Private Sub TextBox1_KeyPress (ByVal sender As Object, ByVal e As _

 System.Windows.Forms.KeyPressEventArgs) Handles TextBox1.KeyPress

 If Char.IsDigit(e.KeyChar) = True Then

 MessageBox.Show("You pressed a number key")

 End If

End Sub

6. Handling the Focus
Handling the Focus

Focus is the ability of an object to receive user input through the mouse or the keyboard. Although you can have several controls on your form, only one can have the focus at any given time. The control that has the focus is always on the active form of the application.

Every control implements the Focus method. This method sets the focus to the control that called it. The Focus method returns a Boolean value that indicates whether the control was successful in setting the focus. Disabled or invisible controls cannot receive the focus. You can determine whether a control can receive the focus by checking the Can Focus property, which returns true if the control can receive the focus and false if it cannot.

' This example checks to see if TextBox1 can receive the focus and

' sets the focus to it if it can.

If TextBox1.CanFocus = True Then

 TextBox1.Focus()

End If
Focus events occur in the following order:

1. Enter
2. GotFocus
3. Leave
4. Validating
5. Validated
6. LostFocus
The Enter and Leave events are raised when the focus arrives at a control and when the focus leaves a control, respectively. GotFocus and LostFocus are raised when a control first obtains the focus and when the focus leaves the control, respectively. Although you can use these events for field-level validation, the Validating and Validated events are more suited to that task.

The Validating and Validated Events

The easiest way to validate data is to use the Validating event. The Validating event occurs before a control loses the focus. This event is raised only when the CausesValidation property of the control that is about to receive the focus is set to true. Thus, if you want to use the Validating event to validate data entered in your control, the CausesValidation of the next control in the tab order should be set to true. To use Validating events, the CausesValidation property of the control to be validated also must be set to true. By default, the CausesValidation property of all controls is set to true when controls are created at design time. Typically, the only controls that have CausesValidation set to false are controls such as Help buttons.

The Validating event allows you to perform sophisticated validation on your controls. For example, you can implement an event handler that tests whether the value entered corresponds to a specific format. Another possible use is an event handler that disallows the focus to leave the control until a suitable value has been entered.

The Validating event includes an instance of the CancelEventArgs class. This class contains a single property, Cancel. If the input in your control does not fall within required parameters, you can use the Cancel property within your event handler to cancel the Validating event and return the focus to the control.

The Validated event fires after a control has been successfully validated. You can use this event to perform any actions based on the validated input.

The following code demonstrates a handler for the Validating event. This method requires an entry in TextBox1 before it will allow the focus to move to the next control.

Private Sub TextBox1_Validating(ByVal sender As Object, ByVal e As _

 System.ComponentModel.CancelEventArgs) Handles TextBox1.Validating

 ' Checks the value of TextBox1

 If TextBox1.Text = "" Then

 ' Resets the focus if there is no entry in TextBox1

 e.Cancel = True

 End If

End Sub

To use the Validating event of a text box

1. Add a text box to a form.

2. Create an event handler to handle the Validating event for the text box. In the event handler, set the e.Cancel property to true to cancel validating and return the focus to the text box.

3. Set the CausesValidation property to false for any controls for which you do not want the Validating event to fire.

Form-Level Validation

Form-level validation is the process of validating all fields on a form at once. A centralized procedure implements form-level validation and is usually called when the user is ready to proceed to another step. Implementing a form-level keyboard handler is a more advanced method of form-level validation.

Private Sub btnValidate_Click(ByVal sender As System.Object, ByVal e _

 As System.EventArgs) Handles btnValidate.Click

 Dim aControl As System.Windows.Forms.Control

 ' Loops through each control on the form

 For Each aControl In Me.Controls

 ' Checks to see if the control being considered is a Textbox and

 ' if it contains an empty string

 If TypeOf aControl Is TextBox AndAlso aControl.Text = "" Then

 ' If a textbox is found to contain an empty string, it is

 ' given the focus and the method is exited.

 aControl.Focus()

 Exit Sub

 End If

 Next

End Sub

Form-Level Keyboard Handler

A keyboard handler is a somewhat more sophisticated technique for form-level validation. A centralized keyboard handler allows you to manage data input for all fields on a form. For example, you can create a method that enables command buttons only after appropriate input has been entered into each field and that performs specific actions with each keystroke.

The KeyPress, KeyDown, and KeyUp events are used to implement a form-level keyboard handler. If a form has no visible or enabled controls, it will raise keyboard events. If the form has controls, however, these events will not be raised. For the form to raise these events, the KeyPreview property of the form must be set to true. When set to true, the form raises keystroke events before the control that has the focus. For example, assume that there is a KeyPress handler for the form, that there is a KeyPress handler for a text box on that form, and that the KeyPreview property of the form is set to true. When a key is pressed, the form raises the KeyPress event first and the form’s KeyPress event handler executes first. When execution is complete, the text box’s KeyPress event handler will execute.

If you are using form-level validation, you can prevent a control’s KeyPress event handler from executing by setting the KeyPressEventArgs.Handled property to True, as shown in the following example:

Private Sub Form1_KeyPress(ByVal sender As Object, ByVal e As _

 System.Windows.Forms.KeyPressEventArgs) Handles MyBase.KeyPress

 ' This handles the event and prevents it from being passed to

 ' the control's KeyPress event handler

 e.Handled = True

End Sub

7. Summary

· Form-level validation validates all fields on a form simultaneously. Field-level validation validates each field as data is entered. Field-level validation provides a finer level of validation control.

· The TextBox control contains several properties that restrict the values users can enter. These include

· MaxLength
· PasswordChar
· ReadOnly
· MultiLine
· Keyboard events allow you to validate keystrokes; these events are raised by the control that has the focus and is receiving input. The form also raises these events when the KeyPreview property is set to true. These events are

· KeyDown
· KeyUp
· KeyPress
· The Char structure contains several static methods that are useful for validating character input. These methods are

· Char.IsDigit
· Char.IsLetter
· Char.IsLetterOrDigit
· Char.IsPunctuation
· Char.IsLower
· Char.IsUpper
· The Validating event occurs before the control loses focus and should be used to validate user input. This event occurs only when the CausesValidation property of the control that is about to receive the focus is set to true. To keep the focus from moving away from the control in the Validating event handler, set the CancelEventArgs.Cancel property to true in the event handler.

Unit 11

Menus

1. Introduction

2. Objectives

3. Creating Menus During Design

4. Shortcut Keys

5. Using Menu Item Events

6. Creating Context Menus

7. Displaying Check Marks on Menu Items

8. Displaying Radio Buttons on Menu Items

9. Cloning Menu

10. Merging Menus at Run Time

11. Adding Menu Items at Run Time

12. Summary
1. Introduction

Menus allow your users to easily access critical application functions and tools. Proper menu design and planning ensure proper functionality and accessibility of your application.

Menus allow users to access top-level commands and functions in a familiar, easy-to-understand interface. A well-designed menu that exposes your application’s functionality in a logical, consistent manner makes your application easier to learn and use. A poorly designed menu, on the other hand, will be avoided and used only when necessary.

When designing menus, you should consider the logical flow of the application. Menu items should be grouped according to related functionality. Using access keys to enable keyboard shortcuts to menu items also makes your application easier to use.

2. Objectives
· Explain the importance of menus in interface design

· Describe the process of creating a menu using the MainMenu component

· Describe the process of creating a context menu using the ContextMenu ​component

· Explain how to enable or disable a menu item

· Explain how to create shortcut keys for menu items

· Explain how to display a check mark or a radio button on a menu item

· Explain how to make menu items invisible

· Explain how to dynamically add items to a menu

· Explain how to dynamically clone a menu

3. Creating Menus During Design
Main menus are created during the design stage with the Main Menu component. The Main Menu component contains and manages a collection of Menu Item controls, which form the visual element of a menu at run time. With the Main Menu component, you can rapidly and intuitively create menus for your forms.

Using the Main Menu Component

The Main Menu component allows you to do the following:

· Create new menus and menu bars

· Add new menu items to existing menus

· Modify the properties of menus and menu items via the Properties window

· Create event handlers to handle the Click event and other events for menu items

To create a new menu, all you have to do is add a MainMenu component to your form. The component appears in the component tray, and a box with the text Type Here appears in the menu bar of the form. To create a new menu item, type in the box where indicated. The menu appears on your form as it would at run time. As you type, additional boxes are created beneath and to the right of the first menu item. Submenus are created the same way. If you want to create a submenu, simply type an entry to the right of the menu item that you want to expand.

[image: image23.png]

When an item is added to a menu, the designer creates an instance of a Menu Item object. Each MenuItem object has its own properties and members that can be set in the Properties window. The Text property represents the text that will be displayed at run time and is set to the text that you type. The Name property indicates how you will refer to this object in code and receives a changeable default value.

To create main menus at design time

In the Toolbox, add a Main Menu component to the form by double-clicking the Main Menu tool or by dragging it onto the form. A Main Menu component appears in the component tray.

In the designer, type the text for the first menu item in the box presented on the form’s menu bar. As additional boxes appear, add additional menu items until the structure of your menu is complete. Note that the order in which you add menu items will be reflected in the menu layout.

In the Properties window, set any menu-item properties that you want to change, by first selecting the menu item in the designer, and then changing the desired properties.

In the Properties window of the form, make sure that the Menu property is set to the menu you want to display. If you have multiple menus on a form, only the designated menu will be displayed.

Separating Menu Items

You can separate menu items with a separator. A separator is a horizontal line between items on a menu. You can use separator bars to divide menu items into logical groups on menus that

[image: image24.png]Cose

Ext

Typs Fere

You can add a separator to your menus by entering a hyphen as the text of a menu item. The hyphen will be displayed as a separator.

To create a separator bar on your menu

Select the menu item that represents where you want to place a separator. Type a hyphen (-). At run time, this hyphen will be displayed as a separator bar

Menu Access and Shortcut Keys

You can enable keyboard access to your menus with access and shortcut keys.

Access Keys

Access keys allow users to open a menu by pressing the Alt key and typing a designated letter. When the menu is open, you can select a menu command by pressing the Alt key and the correct access key. For example, in most programs, the Alt+F key opens the File menu. Access keys are displayed on the form as an underlined letter on the menu items.

You can use the same access key for different menu items as long as the menu items are contained in different menu groups. For example, you can use Alt+C to access the Close command on the File menu group as well as the Copy command on the Edit menu group. You should avoid using the same access key for multiple items on a menu group—for example, avoid using Alt+C for both the Cut and the Copy commands of an Edit menu group. If you do use the same access key combination for two items on a menu group, the access key lets you toggle your selection between the items, but you will be unable to select the item without first pressing the Enter key.

To assign an access key to a menu item

In the designer, click the menu item to which you want to assign an access key. Type an ampersand (&) in front of the desired letter for the access key.

4. Shortcut Keys
Shortcut keys enable instant access to menu commands, thus providing a keyboard shortcut for frequently used menu commands. Shortcut key assignments can be single keys, such as Delete, F1, or Insert, or they can be key combinations, such as Ctrl+A, Ctrl+F1, or Ctrl+Shift+X. When a shortcut key is designated for a menu item, it is shown to the right of the menu item. The shortcut key combination will not be displayed if the ShowShortcut property of the menu item is set to false.

To assign a shortcut key

Select the menu item for which you want to enable a shortcut key.

In the Properties window, select the Shortcut property. Choose the appropriate shortcut key combination from the drop-down menu.

5. Using Menu Item Events
You can create event handlers for menu items in the same way that you create event handlers for other controls. The most frequently used event is the Click event. The Click event handler should contain the code to be executed when the menu item is clicked. This code will also execute when a shortcut key combination is pressed.

The Select event is raised when a menu item is highlighted, either with the mouse or with access keys. You might create an event handler that provides detailed help regarding use of a menu command when selected.

The Popup event is raised just before a menu item’s list is displayed. You can use this event to enable and disable menu items at run time.

6. Creating Context Menus
Context menus are menus that appear when an item is right-clicked. Context menus are created with the ContextMenu component. The ContextMenu component is edited in exactly the same way as the MainMenu component is edited. The ContextMenu appears at the top of the form, and you can add menu items by typing them on the control.

Context menus are very similar to main menus in many respects. Both contain and manage a collection of menu-item controls. You can enable shortcut keys, but not access keys for menu items in a context menu. To associate a context menu with a particular form or control, set the ContextMenu property of that form or control to the appropriate menu.

To create a context menu

In the Toolbox, add a ContextMenu component to the form, either by double-clicking the ContextMenu tool or by dragging it onto the form. A ContextMenu component appears in the component tray.

In the designer, type the text for the first menu item in the box presented on the form’s menu bar. As additional boxes appear, add additional menu items until your menu structure is complete.

In the Properties window, set any properties and events (for Visual C#) that you want to change for your menu items.

Select the form or control with which you want to associate the context menu. In the Properties window for the control, set the ContextMenu property to your context menu. The context menu is displayed at run time when the control is right-clicked. You can associate a single context menu with several controls, but only one context menu can be associated per control.

Modifying Menus at Run Time

You can manipulate your menus to dynamically respond to run-time conditions. For example, if your application is unable to complete a certain command, you can disable the menu item that calls that command. You can display a check mark or a radio button next to a menu item to provide information to the user. You can make menu items invisible at times when it would be inappropriate to choose them. You can add menu items at run time, and menus can be cloned or merged with one another at run time.

Enabling and Disabling Menu Commands

Every menu item has an Enabled property. When this property is set to false, the menu is disabled and cannot respond to user actions. Access and shortcut key actions are also disabled for this menu item, which appears dimmed on the user interface. The following example demonstrates how to disable a menu item at run time:

MenuItem1.Enabled = False

7. Displaying Check Marks on Menu Items
You can use the Checked property to display a check mark next to a menu item. You might display a check mark to indicate that a particular option has been selected. The following example demonstrates how to select and clear a menu item:

' Checks the menu item

MenuItem1.Checked = True

' Unchecks the menu item

MenuItem1.Checked = False

8. Displaying Radio Buttons on Menu Items
You can display a radio button instead of a check mark. To display radio buttons, set the RadioCheck property for the menu item to true. The menu item will then display a radio button instead of a check mark. When the Checked property is false, neither a check mark nor a radio button will be displayed. Note that radio buttons frequently are used to display exclusive options, such as the choice of background colors. If you want to display radio buttons next to mutually exclusive options, you must write code that clears other options when one option is selected.

Making Menu Items Invisible

You can make your menu items invisible by setting the Visible property to false. You can use this property to modify your menus at run time in response to changing conditions. The following code demonstrates how to make a menu item invisible:

MenuItem1.Visible = False

9. Cloning Menus
You can make a copy of existing menu items at run time. For example, you might want to clone an Edit menu item (and its associated submenus) from a main menu to serve as a context menu for a control. You can create a new menu item by using the CloneMenu method. The CloneMenu method creates a copy of the specified menu item and all of its members. This includes contained menu items, properties, and event handlers. Thus, all events that are handled by the original menu item will be handled in the same way by the cloned menu item. The newly created context menu can then be assigned to a control. The following example demonstrates how to clone a menu item as a new context menu at run time:

' The following example assumes the existence of a menu item called

' fileMenuItem and a control called myButton

' Declares and instantiates a new context menu

Dim myContextMenu as New ContextMenu()

' Clones fileMenuItem and fills myContextMenu with the cloned item

myContextMenu.MenuItems.Add(fileMenuItem.CloneMenu())

' Assigns the new context menu to myButton

myButton.ContextMenu = myContextMenu

10. Merging Menus at Run Time
There might be times when you want to display multiple menus as a single menu. The MergeMenu method allows you to combine menus and display them as a single menu at run time. You can merge multiple main or context menus with each other, merge menus with menu items, or merge multiple menu items.

To merge menus at run time

Call the MergeMenu method of the menu or menu item that will be displayed. Supply the menu or menu item to be incorporated as the argument.

fileMenuItem.MergeMenu(myContextMenu)

11. Adding Menu Items at Run Time
You can dynamically add new items to an existing menu at run time. For example, you might add menu items that display the pathnames of the most recently opened files. New menu items will not have event handlers associated with them, but you can specify a method to handle the Click event as an argument to the constructor of the new menu item. This method must be a Sub (void) method and have the same signature as other event handlers. An example follows:

Public Sub ClickHandler (ByVal sender As Object, ByVal e As _

 System.EventArgs)

 ' Implementation details omitted

End Sub

To add menu items at run time

Declare and instantiate a new menu item. You can specify a method to handle the Click event at this time if you choose. For example:

' This example assumes the existence of a method called

' ClickHandler which has the correct event handler signature

Dim myItem As MenuItem

myItem = New MenuItem("Item 1", New EventHandler(AddressOf ClickHandler))

Add the new method to the MenuItems collection of the menu you want to modify.

fileMenuItem.MenuItems.Add(myItem)

12. Summary
1. Menus allow you to enable access to high-level commands of your application through an easy-to-use interface. The Main Menu control allows you to rapidly create menus for your applications. Features that enhance menus include separator bars, access keys, and shortcut keys.

2. Context menus are useful for enabling access to commands in a variety of contextual situations. Context menus can be created with the Context Menu control and are created at run time in the same manner as main menus.

3. At run time, menus can dynamically provide customized interaction between your application and its users. You can enable and disable menu items, make menu items invisible, and display a check mark or a radio button next to a menu item. You can also dynamically change the structure of menus by creating new menus with the Clone Menu method, merging multiple existing menus, or adding new menu items to existing menus.

Unit 12

Interfaces and Exception handling

1. Interfaces

2. Abstract classes

3. Exception handling

a. System define

b. User define

4. Summary

1. Interfaces
An interface defines a contract that classes must adhere to. An interface is like an abstract class. An abstract class can have methods with or without implementations; however, an interface can only have methods that don't have implementation. In an OOP language that supports only single class inheritance like VB.NET, inheritance plays a very important role. Interfaces enable multiple inheritances in VB.NET because a VB.NET class can extend multiple interfaces. Extending an interface has a special term: implement. To implement an interface in VB.NET, you use the keyword Implements. As with extending an abstract class, you must provide implementations for all methods in the interface you implement.

An interface is declared using the keyword Interface. Like other types in VB.NET, there is a naming convention for interfaces. The recommendation is to use the class's naming convention and prefix the interface name with an I. For example, here are some good names for interfaces: IScalable, ISerializable, I3DShape, IPolygonShape, etc.

For example: An interface called IShape
Interface IShape

End Interface

For a class to implement an interface, the same syntax as class extension is used. The class Line implements the IShape interface.

List : Implementing an interface
Interface IShape

End Interface

Class Line: Implements IShape

End Class

An alternative syntax would be:

Interface IShape

End Interface

Class Line

 Implements IShape

End Class

An interface in VB.NET can only have methods, properties and events. An interface cannot contain a field. All interface members are implicitly public and may not specify an access modifier. In the class that implements an interface, each method implementation must specify the interface method that it implements using the keyword Implements, followed by the name of the interface and the method name. The interface name and the method name are separated using a period. For example, the code show an interface called IShape with one method called Draw. There is also a class named Line that implements IShape.

Listing 23: Implementing an interface method Imports System

Interface IShape

 Sub Draw()

End Interface

Class Line

 Implements IShape

 Sub Draw() Implements IShape.Draw

 Console.Write("Draw a line")

 End Sub

End Class

You can then instantiate a Line object as you would a normal class. Like abstract classes, interfaces cannot be instantiated.
There are times when you do not want to code the implementation within a class. Interfaces provide a powerful mechanism to separate the definitions of objects from actual implementation. Note that only the definitions of methods and properties are present, not the implementation codes.

Vehicle Interface
Interface Vehicle

 Sub Start()

 Sub Brake()

 Sub TurnLeft()

 Sub TurnRight()

 Sub Reverse()

 Sub Accelerate()

 Function GetSpeed()

 Property wheels() As Integer

End Interface

Interface Car

 Inherits Vehicle

End Interface

Interface Dimension

 Property length() As Single

 Property breadth() As Single

End Interface

Shows the SportsCar class implementing (using the Implements keyword) the Car and Dimension interfaces. A class that implements an interface must provide implementations for that interface.

SportsCar Class
Public Class SportsCar

 Implements Car

 Implements Dimension

 Public Sub start() Implements Car.Start

 ' implementation codes here

 End Sub

 Public Sub Brake() Implements Car.Brake

 ' implementation codes here

 End Sub

 Public Sub turnleft() Implements Car.TurnLeft

 ' implementation codes here

 End Sub

 Public Sub turnright() Implements Car.TurnRight

 ' implementation codes here

 End Sub

 Public Sub reverse() Implements Car.Reverse

 ' implementation codes here

 End Sub

 Public Sub accelerate() Implements Car.Accelerate

 ' implementation codes here

 End Sub

 Public Function getspeed() Implements Car.GetSpeed

 ' implementation codes here

 End Function

 Property wheels() As Integer Implements Car.wheels

 Get

 ' implementation codes here

 End Get

 Set(ByVal Value As Integer)

 ' implementation codes here

 End Set

 End Property

 Property breadth() As Single Implements Dimension.breadth

 Get

 ' implementation codes here

 End Get

 Set(ByVal Value As Single)

 ' implementation codes here

 End Set

 End Property

 Property length() As Single Implements Dimension.length

 Get

 ' implementation codes here

 End Get

 Set(ByVal Value As Single)

 ' implementation codes here

 End Set

 End Property

End Class

It also shows that all of the methods and properties defined by the two interfaces are defined by the SportsCar class. Unlike class inheritance, multiple inheritance in interfaces is allowed, like the following:

Interface Truck

 Inherits Car

 Inherits Dimension

End Interface
2. Abstract classes
The inheriting class can only provide implementation. Or, you know that the method will be overridden in the child classes, so why bother providing an implementation at all? If this is the case, your class is incomplete; this is called an abstract class. The method that you don't provide implementation for is called an abstract method. An abstract method is denoted by the MustOverride keyword. The class itself has the MustInherit modifier because it cannot be instantiated using the new keyword.

For example, the class in is named Shape and it is abstract because one of the methods (Draw) does not have implementation. Other than that, the class looks like a normal class.

An abstract class
Imports System

MustInherit Class Shape

 Public x As Integer = 9

 Public y As Integer = 0

 MustOverride Sub Draw()

 Public Function GetInfo() As String

 GetInfo = "An abstract class"

 End Function

End Class

Note that the Draw method does not have the End Sub declaration.

When you extend an abstract class, you must provide implementations for all methods that must be overridden. Otherwise, the inheriting class itself will be an abstract class and must be declared with the MustInherit keyword.

The Rectangle and Line classes in inherit Shape.

Inheriting from an abstract class

Class Rectangle: Inherits Shape

 Overrides Sub Draw()

 ' Draw a rectangle here

 End Sub

End Class

Class Line: Inherits Shape

 Overrides Sub Draw()

 ' Draw a line here

 End Sub

End Class

· Namespaces

The .NET framework uses a dot syntax to group class libraries into easily recognized groups. This naming convention is known as a namespace. For example in your application you may have many classes, each performing different functions. You may run into name collision, where you have one or more classes with the same name. In this case, you can organize your classes using Namespace:

Namespace Graph

 Public Class Point

 ' Members declaration here

 End Class

End Namespace

Namespace Direction

 Public Class Point

 ' Members declaration here

 End Class

End Namespace

To use the classes with namespaces, you should specify the full namespace:

 Dim ptX As New Graph.Point()

 Dim goNorth As New Direction.Point()

Note: you can also reduce the amount of typing by using the Imports statement:

 Imports MyApplication.Graph

 Dim ptX As New Point()

The Set Keyword

This has created some confusion for developers who sometimes are just not sure whether to use the Set keyword.

' Visual Basic 6.0

Dim cmdButton As CommandButton

Set cmdButton = Command1

In VB.NET, Microsoft has removed this confusion, and the Set keyword is no longer supported (do not confuse this Set with the one in Property).

' Visual Basic .NET

Dim cmdButton As Button

cmdButton = Button1

Inheritance

In the first example, we have seen how a class can be defined and instantiated. In the next example, we will take a look at how classes can be inherited. Listing 2 shows the class definition of a class called Shape.

E.g. Shape Class
Public MustInherit Class Shape

 Dim l, b As Single

 Public MustOverride Function Area() As Single

 Public Overridable Function Perimeter() As Single

 Return 2 * (l + b)

 End Function

 Property length()

 Get

 Return l

 End Get

 Set(ByVal Value)

 l = Value

 End Set

 End Property

 Property breadth()

 Get

 Return b

 End Get

 Set(ByVal Value)

 b = Value

 End Set

 End Property

End Class

3. Exception handling
Exception handling is an in built mechanism in .NET framework to detect and handle run time errors. The .NET framework contains lots of standard exceptions. The exceptions are anomalies that occur during the execution of a program. They can be because of user, logic or system errors. If a user (programmer) do not provide a mechanism to handle these anomalies, the .NET run time environment provide a default mechanism, which terminates the program execution.

VB.NET provides three keywords try, catch and finally to do exception handling. The try encloses the statements that might throw an exception whereas catch handles an exception if one exists. The finally can be used for doing any clean up process.

The general form try-catch-finally in VB.NET is shown below

Try
' Statement which can cause an exception.

Catch
x
as
Type
' Statements for handling the exception

Finally
End Try 'Any cleanup code

If any exception occurs inside the try block, the control transfers to the appropriate catch block and later to the finally block.

But in VB.NET, both catch and finally blocks are optional. The try block can exist either with one or more catch blocks or a finally block or with both catch and finally blocks.

If there is no exception occurred inside the try block, the control directly transfers to finally block. We can say that the statements inside the finally block is executed always. Note that it is an error to transfer control out of a finally block by using break, continue, return or goto.

In VB.NET, exceptions are nothing but objects of the type Exception. The Exception is the ultimate base class for any exceptions in VB.NET. The VB.NET itself provides couple of standard exceptions. Or even the user can create their own exception classes, provided that this should inherit from either Exception class or one of the standard derived classes of Exception class like DivideByZeroExcpetion ot ArgumentException etc.

Uncaught Exceptions
The following program will compile but will show an error during execution. The division by zero is a runtime anomaly and program terminates with an error message. Any uncaught exceptions in the current context propagate to a higher context and looks for an appropriate catch block to handle it. If it can’t find any suitable catch blocks, the default mechanism of the .NET runtime will terminate the execution of the entire program.

Importsystem
Class MyClient

Public Shared Sub Main()

Dim x As Integer = 0

Dim div As Integer = 100 / x

Console.WriteLine(div)

End Sub 'Main

End Class 'MyClient

The modified form of the above program with exception handling mechanism is as follows. Here we are using the object of the standard exception class DivideByZeroException to handle the exception caused by division by zero.

Imports System

Class MyClient

Public Shared Sub Main()

Dim x As Integer = 0

Dim div As Integer = 0

Try
div = 100 / x

Console.WriteLine("This line in not executed")

Catch de As DivideByZeroException

Console.WriteLine("Exception occured")

End Try

Console.WriteLine("Result is {0}", div)

EndSub'Main
End Class 'MyClient

In the above case the program do not terminate unexpectedly. Instead the program control passes from the point where exception occurred inside the try block to the catch blocks. If it finds any suitable catch block, executes the statements inside that catch and continues with the normal execution of the program statements.

If a finally block is present, the code inside the finally block will get also be executed.

Class
MyClient

Public
 Shared
 Sub
 Main()
Dim
 x
 As
 Integer
 =
 0
Dim
 div
 As
 Integer
 =
0
Try
div
=
 100
 /
 x
Console.WriteLine("Not
 executed
 line")
Catch
 de
 As
 DivideByZeroException
Console.WriteLine("Exception
 occured")
Finally
Console.WriteLine("Finally
 Block")
End
 Try
Console.WriteLine("Result
 is
 {0}",
 div)
End
Sub
 'Main

End
Class 'MyClient
 Remember that in VB.NET, the catch block is optional. The following program is perfectly legal in VB.NET.

Imports
 System

Class
 MyClient

Public
 Shared
 Sub
Main()
Dim
x
 As
 Integer
 =
0
Dim
div
 As
 Integer
 =
0
Try
div
=
 100
 /
 x
Console.WriteLine("Not
 executed
 line")
Finally
Console.WriteLine("Finally
 Block")
End
 Try
Console.WriteLine("Result
 is
 {0}",
 div)
End
Sub
 'Main
End Class 'MyClient

But in this case, since there is no exception handling catch block, the execution will get terminated. But before the termination of the program statements inside the finally block will get executed. In VB.NET, a try block must be followed by either a catch or finally block

Multiple Catch Blocks

A try block can throw multiple exceptions, which can handle by using multiple catch blocks. Remember that more specialized catch block should come before a generalized one. Otherwise the compiler will show a compilation error.

Imports
System

Class
MyClient

Public
Shared
Sub
Main()
Dim
x
As
Integer
=0
Dim
div
 As
Integer=0
Try
div
=100/x
Console.WriteLine("Not
executed
line")
Catch
de
As
DivideByZeroException
Console.WriteLine("DivideByZeroException")
Catch
 ee
 As
 Exception
Console.WriteLine("Exception")
Finally
Console.WriteLine("Finally
 Block")
End
Try
Console.WriteLine("Result
 is
 {0}",
 div)

End
 Sub
 'Main
End Class 'MyClient

Catching all Exceptions
By providing a catch block without a brackets or arguments, we can catch all exceptions occurred inside a try block. Even we can use a catch block with an Exception type parameter to catch all exceptions happened inside the try block since in VB.NET, all exceptions are directly or indirectly inherited from the Exception class.

Imports
 System

Class
 MyClient

Public
 Shared
 Sub
 Main()
Dim
 x
As
Integer
=
0
Dim
 div
As
 Integer
 =
0
Try
div
=
 100
 /
 x
Console.WriteLine("Not
 executed
line")

Catch

End
 Try
Console.WriteLine("Result
 is
 {0}",
 div)
End
 Sub
'Main
End Class 'MyClient

The following program handles all exception with Exception object.

Imports
System

Class
 MyClient

Public
 Shared
 Sub
Main()
Dim
 x
As
Integer
 =
0
Dim
div
 As
 Integer
 =
 0
Try
div
 =
 100
 /
 x
Console.WriteLine("Not
 executed
 line")
Catch
 e
 As
Exception
Console.WriteLine("oException")
End
 Try
Console.WriteLine("Result
is
{0}",
 div)

End
Sub
'Main
End Class 'MyClient

Throwing an Exception
In VB.NET, it is possible to throw an exception programmatically. The ‘throw’ keyword is used for this purpose. The general form of throwing an exception is as follows.

Throw exception_obj

For example the following statement throw an ArgumentException explicitly.

Throw New ArgumentException("Exception")

Imports
 System

Class
 MyClient

Public
 Shared
Sub
 Main()
Try

Throw
 New
DivideByZeroException("Invalid
 Division")
Catch
e
 As
 DivideByZeroException
Console.WriteLine("Exception")
End
 Try
Console.WriteLine("LAST
 STATEMENT")
End
 Sub
'Main
End Class 'MyClient
 Re-throwing an Exception

The exceptions, which we caught inside a catch block, can re-throw to a higher context by using the keyword throw inside the catch block. The following program shows how to do this.

Imports System

Class [MyClass]

Public Sub Method()
Try
Dim x As Integer = 0
Dim sum As Integer = 100 / x
Catch e As DivideByZeroException
Throw
End Try
End Sub 'Method

End Class '[MyClass]

Class MyClient

Public Shared Sub Main()
Dim mc As New [MyClass]()
Try
mc.Method()
Catch e As Exception
Console.WriteLine("Exception caught here")
End Try
Console.WriteLine("LAST STATEMENT")
End Sub 'Main
End Class 'MyClient

a. Standard Exceptions
There are two types of exceptions: exceptions generated by an executing program and exceptions generated by the common language runtime. System.Exception is the base class for all exceptions in VB.NET. Several exception classes inherit from this class including ApplicationException and SystemException. These two classes form the basis for most other runtime exceptions. Other exceptions that derive directly from System.Exception include IOException, WebException etc.

The common language runtime throws SystemException. The ApplicationException is thrown by a user program rather than the runtime. The SystemException includes the ExecutionEngineException, StaclOverFlowException etc. It is not recommended that we catch SystemExceptions nor is it good programming practice to throw SystemExceptions in our applications.

System.OutOfMemoryException

System.NullReferenceException

Syste.InvalidCastException

Syste.ArrayTypeMismatchException

System.IndexOutOfRangeException

System.ArithmeticException

System.DevideByZeroException

System.OverFlowException

b. User-defined Exceptions
In VB.NET, it is possible to create our own exception class. But Exception must be the ultimate base class for all exceptions in VB.NET. So the user-defined exception classes must inherit from either Exception class or one of its standard derived classes.

Imports System

Class MyException
Inherits Exception

Public Sub New(str As String)
Console.WriteLine("User defined exception")
End Sub 'New
End Class 'MyException

Class MyClient

Public Shared Sub Main()
Try
Throw New MyException("RAJESH")
Catch e As Exception
Console.WriteLine(("Exception caught here" + e.ToString()))
End Try
Console.WriteLine("LAST STATEMENT")
End Sub 'Main
End Class 'MyClient

Design Guidelines

Exceptions should be used to communicate exceptional conditions. Don’t use them to communicate events that are expected, such as reaching the end of a file. If there’s a good predefined exception in the System namespace that describes the exception condition-one that will make sense to the users of the class-use that one rather than defining a new exception class, and put specific information in the message. Finally, if code catches an exception that it isn’t going to handle, consider whether it should wrap that exception with additional information before re-throwing it.

4. Summary
· An interface defines a contract that classes must adhere to. An interface is like an abstract class. An abstract class can have methods with or without implementations; however, an interface can only have methods that don't have implementation. In an OOP language that supports only single class inheritance like VB.NET, inheritance plays a very important role. Interfaces enable multiple inheritances in VB.NET because a VB.NET class can extend multiple interfaces. Extending an interface has a special term: implement. To implement an interface in VB.NET, you use the keyword Implements. As with extending an abstract class, you must provide implementations for all methods in the interface you implement.

· In VB.NET, it is possible to create our own exception class. But Exception must be the ultimate base class for all exceptions in VB.NET. So the user-defined exception classes must inherit from either Exception class or one of its standard derived classes.

· By providing a catch block without a brackets or arguments, we can catch all exceptions occurred inside a try block. Even we can use a catch block with an Exception type parameter to catch all exceptions happened inside the try block since in VB.NET, all exceptions are directly or indirectly inherited from the Exception class.
· The .NET framework uses a dot syntax to group class libraries into easily recognized groups. This naming convention is known as a namespace.
Unit 13

Interfaces and Exception handling

1. Introduction of component
2. COM
3. Accessing a Web Service

4. Summary
1. Introduction of component
VB.NET has another concept that is very similar to a class – the component. In fact, we can pretty much use a component and a class interchangeably, though there are some differences that we'll discuss.

A component is really little more than a regular class, but it is one that supports a graphical designer within the VB.NET IDE. This means we can use drag-and-drop to provide the code in our component with access to items from the Server Explorer or from the Toolbox.

To add a component to a project, select the Project | Add Component menu option, give the component a name, and click Open in the Add New Item dialog.

When we add a class to our project we are presented with the code window. When we add a component on the other hand, we are presented with a graphical designer surface, much like what we'd see when adding a Web Form to the project:

If we switch to the code view (by right-clicking in the designer and choosing View Code), we will see the code that is created for us automatically:

This isn't a lot more code than we'd see with a regular class, though there certainly are differences. First off, we see that this class inherits from System.ComponentModel.Component. There's also a collapsed region of code in a component. This region contains code generated by the graphical designer. Here's a quick look at what is included by default:

#Region " Component Designer generated code "

 Public Sub New(Container As System.ComponentModel.IContainer)
 MyClass.New()

 'Required for Windows.Forms Class Composition Designer support
 Container.Add(me)
 End Sub

 Public Sub New()
 MyBase.New()

 'This call is required by the Component Designer.
 InitializeComponent()

 'Add any initialization after the InitializeComponent() call

 End Sub

 'Component overrides dispose to clean up the component list.
 Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)
 If disposing Then
 If Not (components Is Nothing) Then
 components.Dispose()
 End If
 End If
 MyBase.Dispose(disposing)
 End Sub

 'Required by the Component Designer
 Private components As System.ComponentModel.IContainer

 'NOTE: The following procedure is required by the Component Designer
 'It can be modified using the Component Designer.
 'Do not modify it using the code editor.
 <System.Diagnostics.DebuggerStepThrough()> _
 Private Sub InitializeComponent()
 components = New System.ComponentModel.Container()
 End Sub

#End Region

As it stands, this code does very little beyond creating a single Container class object. However, if we switch the view back to the designer, we can drag-and-drop items onto our component. For instance, in the Toolbox there is a Components tab, which has entries for a variety of useful items such as a MessageQueue, a DirectoryEntry, and so forth. If we drag-and-drop a Timer (from the Components tab of the Toolbox) onto our component, it will be displayed in the designer:

From here, we can set its properties using the standard Properties window in the IDE, just like we would for a control on a form. For instance, we can set its Name property to the Timer.

If we now return to the code window and look at the automatically generated code, we'll see that the region now includes code to declare, create, and initialize the Timer object:

#Region " Component Designer generated code "

 Public Sub New(Container As System.ComponentModel.IContainer)
 MyClass.New()

 'Required for Windows.Forms Class Composition Designer support
 Container.Add(me)
 End Sub

Public Sub New()
 MyBase.New()

 'This call is required by the Component Designer.
 InitializeComponent()

 'Add any initialization after the InitializeComponent() call

 End Sub

 'Component overrides dispose to clean up the component list.
 Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)
 If disposing Then
 If Not (components Is Nothing) Then
 components.Dispose()
 End If
 End If
 MyBase.Dispose(disposing)
 End Sub

 'Required by the Component Designer
 Private components As System.ComponentModel.IContainer

 'NOTE: The following procedure is required by the Component Designer
 'It can be modified using the Component Designer.
 'Do not modify it using the code editor.

 Friend WithEvents theTimer As System.Windows.Forms.Timer

<System.Diagnostics.DebuggerStepThrough()> _
 Private Sub InitializeComponent()

Me.components = New System.ComponentModel.Container()
 Me.theTimer = New System.Windows.Forms.Timer(Me.components)

 End Sub

#End Region

Normally, we don't really care about the fact that this code was generated. Rather, what is important is that we now automatically, simply by dragging and dropping and setting some properties, have access to a Timer object named theTimer.

This means that we can write code within our component, just like we might in a class, to use this object:

Public Sub Start()
 theTimer.Enabled = True
 End Sub

 Public Sub [Stop]()
 theTimer.Enabled = False

 End Sub

 Private Sub theTimer_Elapsed(ByVal sender As System.Object, _
 ByVal e As System.Timers.ElapsedEventArgs) Handles theTimer.Elapsed

' do work

 End Sub

Here we can see that, with a simple drag-and-drop operation, we've gained access to a variable called theTimer referencing a Timer object, and we are able to create methods that interact with and use that
object much like we would with a control dropped onto a form.

For the most part, we can use a component interchangeably with a basic class, but the use of a component incurs some extra overhead that a basic class does not, since it inherits all the functionality of System.ComponentModel.Component.
2. COM
The .NET Framework provides considerable built-in functionality, from time to time you might want to access external components—for example, an assembly you built using the .NET Framework or an older COM component. You might also need to make a call to a Web service or even interact directly with the Microsoft Windows Application Programming Interface (API). Visual Studio .NET allows you to incorporate these entities into your application with a minimum of effort.

COM is the fundamental “object model” on which ActiveX Controls and OLE are built.COM allows an object to expose its functionality to other components and to host applications. It defines both how the object exposes itself and how this exposure works across processes and across networks. Com also defines the object’s life cycle.

· Accessing .NET and COM Type Libraries

You can access any .NET or COM library on your system without much difficulty. These components might represent other development projects you have created, legacy COM components, or business logic that you need to incorporate into your application. The generalized scheme for accessing .NET or COM components is to create a reference to the type library, Import (use) the type library in your application, and then declare and instantiate the class you want to use.

You can obtain a list of available type libraries in the Add Reference dialog box. To display the Add Reference dialog box, right-click References in the Solution Explorer under your project, and choose Add Reference from the shortcut menu.

The Add Reference dialog box has three tabs. Choosing the .NET tab displays available .NET assemblies; the COM tab displays available COM type libraries; and the Projects tab displays available projects. If the item to which you want to add a reference is not listed, you can browse to the file location by clicking the Browse button. Once you have located the reference you want to add, you can select it with the Select button. The reference is then added to your project in the Solution Explorer.

Once you have added a reference to an assembly or COM type library, you can use the types contained in that reference in your application by using the fully qualified name of the type. If you want to obviate the need to use the fully qualified name, you can use the Imports (Visual Basic .NET).

To access a .NET assembly or a COM type library

1. In Solution Explorer, right-click the References node under your project and then choose Add Reference. The Add Reference dialog box opens.

2. Select the reference you want to add. COM type libraries are listed under the COM tab; .NET assemblies are listed under the .NET tab; and projects can be found under the Projects tab.

3. Use the Imports (Visual Basic .NET) or using (Visual C#) keyword to import the reference into your application.

4. Declare and instantiate the types exposed by your reference as normal.

Fundamental to COM are these concepts:

· Interfaces- the mechanism through which an object exposes its functionality.

· IUnknown-the basic interface on which all others are based. It implements the reference counting and interface querying mechanisms running through COM.

· Reference Counting-the technique by which an object decides when it is no longer being used and is therefore free to remove itself.

· QueryInterface-the method used to query an object for a given interface.

· Marshaling-the mechanism that enables objects to be used across thread, process and network boundaries allowing for location independence.
3. Accessing a Web Service
An integral feature of the .NET Framework is the Web service. A Web service is a type of class that is hosted on the Internet. You can declare an instance of the Web service in your application, and then call its methods either synchronously or asynchronously.

You can create a reference to a Web service in the Solution Explorer. You can display the Add Web Reference window by right-clicking References under your project and choosing Add Web Reference. This displays a screen that allows you to navigate to the URL of a Web reference or to search online if you do not know the URL. The Add Web Reference window for Visual Studio .NET.

If you do not know the address of the Web service you would like to use, the window displays directories to search. The Universal Description Discovery Integration (UDDI) directory allows you to search Web service registries for companies that provide Web services. When a company is selected, the Web services it offers will be displayed. Choosing a Web service will display the XML contract in the left page of the window and the name of the Web service in the right page. When accessing a Microsoft XML Web service, you can also view a more reader-friendly description of the Web service by removing “? WSDL” from the address displayed in the status bar and reloading the page. Once you have verified the correct Web reference to add, click the Add Reference button to add the reference to your project.

When an instance of a Web service is instantiated, the .NET Framework actually creates an instance of a proxy class that represents the Web service. This class resides in your application and exposes all of the methods provided by the Web service. When one of these methods is called, the call is relayed to the Web service at the address specified on the Internet. You can instantiate a Web service just like any other component.

Dim myService As New WebService1

Calls to Web service methods can be made in two ways: synchronously or asynchronously. Synchronous calls behave just like normal function calls. For instance, the following code example demonstrates how to make a synchronous call to a method named myMethod located on myService. This example assumes that you have already created a reference and instantiated the Web service:

myService.myMethod()

Synchronous method calls are made just like regular methods calls. However, because they are accessing resources on the Internet, response time can vary, and application execution will pause until a synchronous call to a Web method is completed. If you do not want to pause program execution while you wait for a Web service call to complete, you can make an asynchronous method call. An asynchronous call starts the call to the Web service on a separate thread, allowing program execution to continue while the Web service processes the request. For every method found on a Web service, there are two additional methods for use asynchronously. The names of these methods are the name of the Web method prefixed with Begin and End. Thus, if a Web service exposes a method named MyMethod, the asynchronous methods for MyMethod are BeginMyMethod and EndMyMethod.

You begin an asynchronous method call with the Begin method. In addition to requiring the same parameters as a synchronous method call, a Begin method call requires an AsyncCallback delegate that specifies the method for the Web method to call back on and an object that allows applications to specify custom state information.

Every Begin method has a return type of IAsyncResult. This interface is used by the corresponding End method to retrieve the data returned by the asynchronous call. The callback method specified by the AsyncCallback delegate must have a signature that takes an IAsyncResult as a parameter. In the callback method, you can call the End method to retrieve the data. The following code example demonstrates how to make an asynchronous call to a method named MyMethod. The example demonstrates how to make the call, specify a callback method, and retrieve the information returned by the call. This assumes that MyMethod is a method on a Web service named WebService1 and that it returns a string.

Public Class AsyncDemo

 Dim myService As WebService1

 Public Sub CallMethodAsynchronously()

 myService = New WebService1()

 ' The AsyncCallback delegate is created with the AddressOf

 ' operator. The object is required by the method call but not

 ' used in this example.

 myService.BeginMyMethod(AddressOf CallBack, New Object())

 End Sub

 Public Sub CallBack(ByVal e as IAsyncResult)

 Dim myString As String

 ' You retrieve the data by calling the 'End' method,

 ' supplying the IAsyncResult as the parameter

 myString = myService.EndMyMethod(e)

 End Sub

End Class

Even though you must specify a callback method, you do not necessarily need to use it. You can retrieve the data in the same method by calling the End method directly. If the asynchronous call has to be returned when the call to the End method is reached, program execution will pause until it returns. The following code example demonstrates how to retrieve data from an asynchronous call in the same method:

Public Sub AsyncDemo()

 Dim myService As New WebService1

 Dim Async as IAsyncResult

 ' Assigns the IAsyncResult returned by the 'Begin' method to

 ' the local variable. The delegate that specifies the callback

 ' method is required but will not be used to retrieve the data.
 Async = myService.BeginMyMethod(AddressOf SomeMethod, New Object())

 ' Do some processor-intensive stuff here

 Dim myString As String

 ' If the call hasn't yet returned, application execution will pause

 ' here until it does.

 myString = myService.EndMyMethod(Async)

End Sub

To create a reference to a Web service

1. In the Solution Explorer, right-click References and choose Add Web Reference.

2. Locate the reference on the Web using either UDDI search or by typing in the address of the Web service. Click the Add Reference button to add the reference to your project.

3. After the reference is added, you can instantiate the Web service just as you would any other class.

To call a method on a Web service synchronously

1. Instantiate the Web service.

2. Call the method as you would call a method of any other class.

To call a method on a Web service asynchronously

1. Create a callback method that takes an IAsyncResult as a parameter.

2. Call the Begin method of the Web method to invoke the asynchronous call. Supply a delegate to the callback method as a parameter to this method.

3. Either in the callback method or in another method, call the End method of the Web method to retrieve the data, specifying the IAsyncResult returned by the Begin method as the parameter.

4. Summary

· You can use .NET assemblies or COM type libraries in your application by creating a reference to the type library and instantiating the relevant component. You can use ActiveX controls in the same way. Additionally, you can add them to the Toolbox.

· You can access a Web service by adding a Web reference to your application. Once the Web reference is added, you can declare and instantiate the Web service in code. This will create a wrapper class that exposes the methods of the Web service.

· Synchronous calls to Web service methods can be made like any other method call. Application execution will pause until the result from a synchronous call is returned.

· Asynchronous calls are made in two parts. The Begin method requires a delegate to a method that receives an IAsyncResult as a parameter. The End method of an asynchronous method call uses the IAsyncResult returned by the Begin method as a parameter to retrieve the data it returns.

· You can declare external functions using the Declare keyword in Visual Basic .NET or the static and extern keywords in Visual C#. You must specify the name of the library that contains the function with the Lib keyword in Visual Basic .NET or the DllImportAttribute attribute in Visual C#. The name and signature of the function must match the name and signature of the external function exactly.

Unit 14

Overview Of ADO .NET

1. Data Base

2. Introduction of Ado.net

3. Summary

1. Data Base
Most applications require some kind of data access. Desktop applications need to integrate with central databases, Extensible Markup Language (XML) data stores, or local desktop databases. ADO.NET data-access technology allows simple, powerful data access while maximizing system resource usage. Different applications have different requirements for data access. Whether your application simply displays the contents of a table, or processes and updates data to a central SQL server, ADO.NET provides the tools to implement data access easily and efficiently.

Disconnected Database Access

Previous data-access technologies provided continuously connected data access by default. In such a model, an application creates a connection to a database and keeps the connection open for the life of the application, or at least for the amount of time that data is required. However, as applications become more complex and databases serve more and more clients, connected data access is impractical for a variety of reasons, including the following:

· Open database connections are expensive in terms of system resources. The more open connections there are, the less efficient system performance becomes.

· Applications with connected data access are difficult to scale. An application that can comfortably maintain connections with two clients might do poorly with 10 and be completely unusable with 100.

· Open database connections can quickly consume all available database licenses, which can be a significant expense. In order to work within a limited set of client licenses, connections must be reused whenever possible.

2. Ado .NET
ADO.NET addresses these issues by implementing a disconnected data access model by default. In this model, data connections are established and left open only long enough to perform the requisite action. For example, if an application requests data from a database, the connection opens just long enough to load the data into the application, and then it closes. Likewise, if a database is updated, the connection opens to execute the UPDATE command, and then closes again. By keeping connections open only for the minimum required time, ADO.NET conserves system resources and allows data access to scale up with a minimal impact on performance.

ADO.NET Data Architecture

Data access in ADO.NET relies on two entities: the DataSet, which stores data on the local machine, and the Data Provider, a set of components that mediates interaction between the program and the database.

The DataSet

The DataSet is a disconnected, in-memory representation of data. It can be thought of as a local copy of the relevant portions of a database. Data can be loaded into a DataSet from any valid data source, such as a SQL Server database, a Microsoft Access database, or an XML file. The DataSet persists in memory, and the data therein can be manipulated and updated independent of the database. When appropriate, the DataSet can then act as a template for updating the central database.

The DataSet object contains a collection of zero or more DataTable objects, each of which is an in-memory representation of a single table. The structure of a particular DataTable is defined by the DataColumns collection, which enumerates the columns in a particular table, and the Constraint collection, which enumerates any constraints on the table. Together, these two collections make up the table schema. A DataTable also contains a DataRows collection, which contains the actual data in the DataSet.

The DataSet contains a DataRelations collection. A DataRelation object allows you to create associations between rows in one table and rows in another table. The DataRelations collection enumerates a set of DataRelation objects that define the relationships between tables in the DataSet. For example, consider a DataSet that contains two related tables: an Employees table and a Projects table. In the Employees table, each employee is represented only once and is identified by a unique EmployeeID field. In the Projects table, an employee in charge of a project is identified by the EmployeeID field, but can appear more than once if that employee is in charge of multiple projects. This is an example of a one-to-many relationship; you would use a DataRelation object to define this relationship.

Additionally, a DataSet contains an ExtendedProperties collection, which is used to store custom information about the DataSet.

The Data Provider

The link to the database is created and maintained by a data provider. A data provider is not a single component, rather it is a set of related components that work together to provide data in an efficient, performance-driven manner. The first version of the Microsoft .NET Framework shipped with two data providers: the SQL Server .NET Data Provider, designed specifically to work with SQL Server 7 or later, and the OleDb .NET Data Provider, which connects with other types of databases. Microsoft Visual Studio .NET 2003 added two more data providers: the ODBC Data Provider and the Oracle Data Provider. Each data provider consists of versions of the following generic component classes:

· The Connection object provides the connection to the database.

· The Command object executes a command against a data source. It can execute non-query commands, such as INSERT, UPDATE, or DELETE, or return a DataReader with the results of a SELECT command.

· The DataReader object provides a forward-only, read-only, connected recordset.

· The DataAdapter object populates a disconnected DataSet or DataTable with data and performs updates.

Data access in ADO.NET is facilitated as follows: a Connection object establishes a connection between the application and the database. This connection can be accessed directly by a Command object or by a DataAdapter object. The Command object provides direct execution of a command to the database. If the command returns more than a single value, the Command object returns a DataReader to provide the data. This data can be directly processed by application logic. Alternatively, you can use the DataAdapter to fill a DataSet object. Updates to the database can be achieved through the Command object or through the DataAdapter.

The generic classes that make up the data providers are summarized in the following sections.

The Connection Object

The Connection object represents the actual connection to the database. Visual Studio .NET 2003 supplies two types of Connection classes: the SqlConnection object, which is designed specifically to connect to SQL Server 7 or later, and the OleDbConnection object, which can provide connections to a wide range of database types. Visual Studio .NET 2003 further provides a multipurpose ODBCConnection class, as well as an OracleConnection class optimized for connecting to Oracle databases. The Connection object contains all of the information required to open a channel to the database in the ConnectionString property. The Connection object also incorporates methods that facilitate data transactions.

The Command Object

The Command object is represented by two corresponding classes, SqlCommand and OleDbCommand. You can use Command objects to execute commands to a database across a data connection. Command objects can be used to execute stored procedures on the database and SQL commands, or return complete tables. Command objects provide three methods that are used to execute commands on the database:

· ExecuteNonQuery.

Executes commands that return no records, such as INSERT, UPDATE, or DELETE

· ExecuteScalar.

Returns a single value from a database query

· ExecuteReader.

Returns a result set by way of a DataReader object

The DataReader Object

The DataReader object provides a forward-only, read-only, connected stream recordset from a database. Unlike other components of a data provider, DataReader objects cannot be directly instantiated. Rather, the DataReader is returned as the result of a Command object’s ExecuteReader method. The SqlCommand.Execute​Reader method returns a SqlDataReader object, and the OleDbCommand.ExecuteReader method returns an OleDbDataReader object. Likewise, the ODBC and Oracle Command.ExecuteReader methods return a DataReader specific to the ODBC and Oracle Data Providers respectively. The DataReader can supply rows of data directly to application logic when you do not need to keep the data cached in memory. Because only one row is in memory at a time, the DataReader provides the lowest overhead in terms of system performance, but it requires exclusive use of an open Connection object for the lifetime of the DataReader.

The DataAdapter Object

The DataAdapter is the class at the core of ADO.NET disconnected data access. It is essentially the middleman, facilitating all communication between the database and a DataSet. The DataAdapter fills a DataTable or DataSet with data from the database whenever the Fill method is called. After the memory-resident data has been manipulated, the DataAdapter can transmit changes to the database by calling the Update method. The DataAdapter provides four properties that represent database commands. The four properties are:

· SelectCommand.

Contains the command text or object that selects the data from the database. This command is executed when the Fill method is called and fills a DataTable or a DataSet.

· InsertCommand.

Contains the command text or object that inserts a row into a table.

· DeleteCommand.

Contains the command text or object that deletes a row from a table.

· UpdateCommand.

Contains the command text or object that updates the values of a database.

When the Update method is called, changes in the DataSet are copied back to the database, and the appropriate InsertCommand, DeleteCommand, or UpdateCommand is executed.

3. Summary
· ADO.NET is a data-access technology that is primarily disconnected and designed to provide efficient, scalable data access.

· Data is represented within a DataSet object, which is a disconnected, in-memory copy of part or all of a database.

· A data provider is a set of classes that provide access to databases. The main components of data providers are:

· Connection
· Command
· DataReader
· DataAdapter
· Visual Studio .NET includes two data providers:

· The SQL Data Provider, which contains classes optimized for accessing SQL Server 7 or later

· The OleDb Data Provider, which contains classes that provide access to a broad range of database formats

· Two additional data providers are included in Visual Studio .NET 2003:

· The ODBC Data Provider, which facilitates access to many different database formats

· The Oracle Data Provider, which contains classes optimized for accessing Oracle databases

Unit 15

Overview of Structured Query Language

1. Introduction

· Select

· Where

· Delete

· Update

· Insert

2. Summary

1. Introduction of SQL
Structured Query Language (SQL) is the universal language of relational databases. SQL can be used to retrieve and filter records from databases, to add records to databases, to delete records from a database, and to change the values of an existing record.

Using SQL statements behind the scenes, ADO .NET handles most of the actual database interaction for you through the classes contained in a data provider. In some cases, though, it is important to be able to generate SQL statements to interact directly with a database. For example, you might want to dynamically build SQL statements in response to user input to retrieve a custom set of rows. In this lesson, you will learn the basics of SQL syntax. Structured Query Language uses four basic statements to interact with a database. The SELECT statement is used to retrieve records from a database; the UPDATE statement is used to update data in a database; the INSERT statement is used to insert a new row into a table; and the DELETE statement is used to delete a record.

a) Select

The SELECT statement is the command used to retrieve records from a database. A SELECT statement can be divided into four segments:

· SELECT.

This segment allows you to specify which fields will be retrieved.

· FROM.

This segment allows you to specify which table or tables will be used to get the fields specified in the SELECT segment.

· WHERE.

(Optional) This segment allows you to apply filter conditions to the rows retrieved.

· ORDER BY.

(Optional) This segment allows you to specify a field by which to order the returned records.

SELECT fields FROM tables;

fields represents the field or fields to be retrieved, and tables represents the table or tables where those fields will be found. For example, to retrieve the EmployeeID and StartDate fields from the Employees table, you use the following statement:

SELECT EmployeeID, StartDate FROM Employees;

You can use the * character to represent all fields in a table or tables. Thus, if you wanted to retrieve all fields from the Employees table, your query would look like this:

SELECT * FROM Employees;

(b) The WHERE clause

You might want to limit or filter the records that you retrieve from the database, such as only the records with a particular value in one field—the optional WHERE clause gives you this choice. To illustrate, the following statement selects all records from the Employees table if the value of the FirstName field is ‘Bob’:

SELECT *

FROM Employees

WHERE FirstName = 'Bob';

You can use logical operators such as AND or OR to specify multiple conditions. The following code example retrieves all records from the Employees table where the LastName field is ‘Jones’ and the FirstName field is ‘Joe’:

SELECT *

FROM Employees

WHERE FirstName = 'Joe' AND LastName = 'Jones';

You can use the IN operator to retrieve records by matching the value of a field to values specified in a list. The following SQL statement shows an example of WHERE…IN. This statement will retrieve the FirstName and LastName fields from the Employees table if the Country field is ‘US’ or ‘UK’:

SELECT FirstName, LastName

FROM Employees

WHERE Country IN ('UK', 'US');

You also can use the BETWEEN operator to specify that a value lies within a specified range. This example retrieves all records from the Sales table if the FinalPrice field is between 100 and 200:

SELECT *

FROM Sales

WHERE FinalPrice BETWEEN 100 AND 200;

The WHERE clause also allows you to search string fields for similar, but not exact, matches using the LIKE operator. The LIKE operator allows you to use wildcard characters to specify a pattern to match. In an SQL query, the underscore (_) character represents any single character, and the percent (%) character represents any number of characters. The following SQL statement is an example:

SELECT *

FROM Employees

WHERE FirstName LIKE 'Wil_';

This statement matches ‘Will’ but not ‘Willy’ or ‘William’. The scenario changes in the following code example:

SELECT *

FROM Employees

WHERE FirstName LIKE 'Wil%';

In this case, the statement matches ‘Will’, ‘William’, ‘Wilhelmina’, and any other FirstName values that begin with ‘Wil’.

© The ORDER BY Clause

The ORDER BY clause, which is also optional, allows you to specify the order in which records are returned. You can use the ASC option to specify ascending order, or the DESC option to specify descending order. The default order is ascending (A to Z, 0 to 9). The following code example selects all fields from the Employees table and returns them in descending order by salary:

SELECT *

FROM Employees

ORDER BY Salary DESC;

The DELETE Statement

A DELETE statement is used to delete records from the database. You can use a delete statement to delete single records or groups of data based on criteria.

WARNING
The DELETE statement is irreversible. Once data is deleted, it cannot be recovered unless the database was previously archived. Take great care when using DELETE statements.

In general, the DELETE statement follows the same syntax as the SELECT statement. The difference is that you do not specify fields to delete, as you can only delete entire rows. You can use the WHERE clause to specify the record or records to be deleted. The following statement deletes any records from the Employees table where the FirstName is ‘Joe’ and the LastName is ‘Jones’:

DELETE FROM Employees

WHERE FirstName = 'Joe' AND LastName = 'Jones';

Note that you can use the same operators in the WHERE clause of the DELETE statement that you can use in the SELECT statement, such as logical operators IN, LIKE, and BETWEEN.

(d) The UPDATE statement

You might need to change the values of existing records to reflect changes in real-world situations. For example, customers move, their addresses change, and the records that represent them must be changed to take the new information into account. Database records can be updated using the UPDATE statement.

The general syntax for an UPDATE statement is as follows:

UPDATE tablename
SET column1 = value1, … ,columnN = valueN
[WHERE predicates];

In this syntax, tablename represents the name of the table in which the updated records exist; column1 represents the first column to be updated; and value1 represents the value to be updated in that column. As many column-value pairs as necessary can be specified this way, separated by commas. The WHERE clause of an UPDATE statement is optional, as it is with the SELECT and DELETE statements. Also, like the DELETE statement, an UPDATE statement cannot be rolled back. To reverse an UPDATE statement, you must perform another UPDATE statement to reset the data or restore the database from an existing backup.

The following code example shows how to update the LastName field of the Employees table if the FirstName is ‘Mary’ and the LastName is ‘Smith’:

UPDATE Employees

SET LastName = 'Jones'

WHERE FirstName = 'Mary' AND LastName = 'Smith';

Note that you can use IN, BETWEEN, LIKE, and other operators in the WHERE clause, just as you would with a SELECT statement.

(e) The INSERT INTO Statement

When it is necessary to add new records to a database, you can use the INSERT INTO statement. This statement causes the insertion of a new record into the specified table. The general syntax for the INSERT INTO statement is as follows:

INSERT INTO table [(column1, … , columnN)]

VALUES (value1, … , valuen);

In this example, table represents the table that will receive the new record. column1 through columnN are optional. If particular columns are not specified, records will be inserted in the default order specified by the table. Note that this can be hazardous, as the structure of the table might change without the knowledge of the developer. Whenever possible, you should specify the affected columns in an INSERT INTO statement. Values for the new record are represented by value1 through valuen. If a value is not specified for a column, it will remain a null value. The following code example demonstrates adding a new record to the Employees table:

INSERT INTO Employees (FirstName, LastName, Title, Salary)

VALUES ('Joe', 'Jones', 'Boss', 100000);

2. Summary
Structured Query Language (SQL) is a language used for communicating with databases. Although ADO.NET handles most of the database interaction, you can manually retrieve, update, insert, or delete records using well-formed SQL statements. The SELECT statement is used to retrieve records, and is divided into four major sections: SELECT, FROM, WHERE, and ORDER BY. Each section allows you to specify different aspects of the records to be retrieved. You can use the DELETE statement to remove records from a database. The UPDATE statement is used to update values in existing records, and the INSERT INTO statement is used to add new records to an existing tables.

Unit 16

Accessing Data

1. Introduction

2. Objectives

3. Connecting to database.
4. Summary
1. Introduction
Visual Studio .NET has many built-in wizards and designers to help you shape your data-access architecture rapidly and efficiently. With minimal actual coding, you can implement robust data access for your application. However, the ADO.NET object model is fully available through code to implement customized features or to fine-tune your program. In this lesson, you will learn how to connect to a database with ADO.NET and retrieve data to your application. You will learn to use the visual designers provided by Visual Studio .NET and direct code access.

2. Objectives
· Establish a connection to a database

· Create and configure a DataAdapter
· Create a Command object that uses SQL strings

· Create a Command object that accesses stored procedures on the database

· Create a typed DataSet
· Fill a DataSet with a DataAdapter
· Use a DataReader to programmatically access data

3. Connecting to a Database

You can implement a database connection in many different ways. The easiest way is to create a connection at design time using the graphical tools in Visual Studio .NET.

Current data connections are managed in the Server Explorer window. This window is normally docked to the left pane of the integrated development environment (IDE) and shares the same space as the Toolbox. If the Toolbox is visible, you can view the Server Explorer by clicking the Server Explorer tab at the bottom of the Toolbox, or by choosing Server Explorer from the View menu. The Server Explorer is shown in Figure 6.1.

Server Explorer displays data connections currently available to Visual Studio .NET as child nodes of the Data Connections node. If you want to add one of these child nodes to your project, all you need to do is drag the connection from the Server Explorer window to the designer. A new Connection object of the appropriate type is created and automatically configured to connect to your database.

To add a connection from Server Explorer

Drag the node that represents a database from the Server Explorer window to the designer.

You can also create a new connection in the Server Explorer by right-clicking the Data Connections node and choosing Add Connection.

The Data Link Properties dialog box is a visual way to configure your data connection. The Providers tab allows you to choose the database provider that you will use in your connection. The Connection tab allows you to configure the specific properties of your connections, and the Advanced tab configures properties not normally needed for every connection. The All tab allows you to view and edit settings for all the properties. Once you have configured your new connection, click OK to close the Data Link Properties window. The new connection appears in the Server Explorer window and can be dragged to your designer.

To create a new connection in Server Explorer

1. In the Server Explorer, right-click Data Connections and choose Add Connection to open the Data Link Properties window.

2. On the Provider tab, choose the appropriate provider for your data connection.

3. On the Connection tab, choose the database you want to connect. Depending on the provider, you also might have to set properties such as the server name or password settings.

4. After you have entered the appropriate information, click the Test Connection button to verify that the connection is functional.

5. Drag the new connection from the Server Explorer, and drop it on the designer surface. A new connection object of the appropriate type is created and correctly configured.

You also can create a database connection manually by dragging a Connection object from the Toolbox to the designer or by declaring and instantiating the object in your code. If you create a connection in code, you will have to manually set the ConnectionString property. The following code example demonstrates how to create a Connection object in code and set the ConnectionString property:

' Declares and instantiates a new OleDbConnection object

Dim myConnection As New OleDbConnection()

' Sets the connection string to indicate a Microsoft Access

' database at the specified path

myConnection.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;" & "DataSource=C:\Northwind\Northwind.mdb"

To create a new connection in code

1. Declare and instantiate the appropriate type of Connection object.

2. Set the ConnectionString property.

To create a new connection in the designer

1. Drag the appropriate type of Connection object from the Data tab of the Toolbox to the designer.

2. In the Properties window, set the ConnectionString property.

Using Data Commands

A Command object contains a reference to a database stored procedure or SQL statement and can execute that statement across an active data connection. A Command object contains all the information it requires to execute the command, including a reference to the active connection, the specification for the command itself, and any parameters required by the command.

Because they only require an active connection and do not need to interact with a DataAdapter, Command objects provide a fast and efficient way to interact with a database. Command objects can be used to perform the following actions:

· Execute commands that do not return records such as INSERT, UPDATE, and DELETE.

· Execute commands that return a single value.

· Execute Database Definition Language (DDL) commands, such as CREATE TABLE, or ALTER.

· Work with a DataAdapter to return a DataSet.

· Return a result set directly through an instance of a DataReader object. This provides the fastest way to access data and is useful when read-only data is required.

· Return a result set as an XML stream. This method is only available with the SqlCommand class.

· Return a result set from multiple tables or command statements.

Creating and Configuring a Data Command

You can create a data command in three ways:

· By dragging a stored procedure (a query that is stored on the database server itself) from the Server Explorer window to the designer.

· By dragging an appropriate Command from the Toolbox Data tab to the designer and configuring it in the Properties window.

· By declaring and instantiating the appropriate type of Command object in code and configuring it manually.

Dragging a stored procedure to the designer is the most straightforward way to create a data command. Any stored procedure on a database can be used to create a Command object. When a stored procedure is dragged onto the designer, a Command object of the appropriate type is created automatically. The new command references the stored procedure and can be used immediately to execute the stored procedure as is—no additional configuration is necessary.

To create a Command object that references an existing stored procedure

Drag the stored procedure from the Server Explorer to the designer. An appropriately configured instance of a Command object is created.

Creating a Command object in the designer is almost as easy as dragging a stored procedure. You can create a Command object by dragging either an SqlCommand or an OleDbCommand from the Toolbox Data tab to the designer. This creates an instance of the Command object you selected. Once created, the Command object must be configured by setting the Connection, CommandType, and CommandText properties.

The CommandType property determines what kind of command is contained by the CommandText property. There are three possible values for the CommandType property, which are:

· Text.

A value of Text indicates that the value contained in the CommandText property will be parsed as an SQL text command. When this is the case, the CommandText property must be set to a valid SQL expression. A Command object can contain multiple SQL statements separated by semicolons (;) if batched SQL commands are supported by the target database. If a Command object contains more than one SQL statement, the statements execute sequentially when the command executes.

· StoredProcedure.

If the CommandType property is set to StoredProcedure, the value contained in the CommandText property must contain the name of an existing stored procedure on the database. Executing this command causes the stored procedure of the same name to execute.

· TableDirect.

A CommandType of TableDirect indicates that the name of a table or tables must be indicated by the CommandText property. Executing this command returns all of the columns and all of the rows of the table or tables named in the CommandText property.

The Connection property must be set to an active connection of the appropriate type (that is, a SqlCommand must have a SqlConnection as its connection, and an OleDbCommand must have an OleDbConnection).

Executing Commands

Each type of Command object has three methods to execute the command it represents:

· ExecuteNonQuery
· ExecuteScalar
· ExecuteReader
The SqlCommand class exposes an additional method, ExecuteXmlReader, for executing the command it represents.

Each of these methods executes the data command represented by the Command object. The difference between these methods lies in the values they return. ExecuteNonQuery is the simplest method, as it executes the data command, but returns no value. Thus, ExecuteNonQuery is the method typically used to call SQL commands or stored procedures of the INSERT, UPDATE, or DELETE types. Additionally, this is the only way in ADO.NET to execute DDL commands such as CREATE or ALTER. The ExecuteScalar method returns the first column of the first row of data returned by the command, no matter how many rows the command actually selects. ExecuteReader returns a DataReader object that can iterate through a result set in a forward-only, read-only manner without involving a DataAdapter. This is the fastest and often the most efficient way to retrieve data when you do not need to update or otherwise manipulate the database itself. The SqlCommand class exposes one additional method, which is ExecuteXmlReader. This class returns an XmlReader object that iterates through the result set and provides data in a forward-only, read-only manner, formatted as XML.

Parameters

Data commands frequently make use of parameters. Often, the values of some elements of a data command are unknown until run time. Consider an application that tracks inventory for a bookstore. It might contain a function that looks up books by title. This functionality can be implemented by querying the database with a SQL statement similar to the following code example:

SELECT * FROM Books WHERE (Title LIKE [value])

At design time, you know that you want the application to find all the books with a title similar to a value supplied by the user at run time. Because you do not know in advance what value the user will supply, you must employ a mechanism for supplying the value to the statement at run time.

Parameters are values that fill placeholders left in the command text. Each parameter is an instance of the OleDbParameter or SqlParameter class, as appropriate. Parameters are stored in the Command object’s Parameters property, and at run time the values are read from the property and placed into the SQL statement or supplied to the stored procedure.

Command objects provide a Parameters collection that exposes a collection of Parameter objects of the appropriate type. Some of the properties exposed by the Parameter objects are as follows:

· DbType (This property is not visible in the designer.)

· Direction
· OleDbType (OleDbParameters only)

· ParameterName
· Precision
· Scale
· Size
· SourceColumn
· SourceVersion
· SQLType (SQLParameters only)

· Value
In OleDbParameters, the DbType and OleDbType properties are related. The DbType property represents the type of parameter, as represented in the common type system (CTS). However, because not all databases are CTS compliant, the OleDbType property represents the type of parameter as it exists in the database. The Parameter object performs all necessary conversions of the application type to the database type. Because the two properties are related, changing the value of one changes the value of the other to a supporting type. In SqlParameter objects, the DbType property and the SqlType property share a similar relationship, wherein the SqlType property specifies the SQL database type represented by the parameter.

The Direction property specifies whether the parameter is for input or output. The possible values for this property are Input, Output, InputOutput, or ReturnValue, which indicates the parameter is to contain a return value from a stored procedure or function.

In code, you can refer to members of the Parameters collection by their index or by their name. The ParameterName property specifies the name that can be used as a key to specify the parameter in code. The following code example demonstrates two different ways to set the value of the first parameter in the collection, which is named myParameter:

' This line sets the value by referring to the index of the parameter

OleDbCommand1.Parameters(0).Value = "Hello World"

' This line sets the value by referring to the name of the parameter

OleDbCommand1.Parameters("myParameter").Value = "Goodbye for now"

The Precision, Scale, and Size properties all affect the size and accuracy of the parameters. Precision and Scale are used with numeric and decimal parameters. Respectively, they represent the maximum number of digits of the Value property and the number of decimal places that Value resolves to. Size is used with binary and string parameters and represents the maximum size of data in the column.

SourceColumn and SourceVersion are used when the parameter is bound to a column in a DataTable. The SourceColumn property specifies the column used to look up or map values, and the SourceVersion property specifies which version of the column to use when it is being edited.

The Value property contains the value represented by the parameter.

When the CommandType property of the Command object is set to Text, you must specify a placeholder for any parameters that will be inserted into the SQL statement. With OleDbCommand objects, this placeholder takes the form of a question mark (?). For example:

SELECT EmpId, Title, FirstName, LastName

FROM Employees

WHERE (Title = ?)

In this example, the question mark indicates where the parameter will be inserted. You also can specify multiple parameters, as follows:

SELECT EmpId, Title, FirstName, LastName

FROM Employees

WHERE (FirstName = ?) AND (LastName = ?)

When the command text requires multiple parameters, the parameters are inserted in the order that they appear in the Parameters collection.

When using a SqlCommand object, you must use named parameters. Placeholders for a named parameter are created by preceding the name of your parameter (as specified by the ParameterName property) with an @ symbol. For example, the following SQL statement specifies a named parameter named Title:

SELECT EmpId, Title, FirstName, LastName

FROM Employees

WHERE (Title = @Title)

The following procedures describe how to use a Command object to execute different kinds of commands.

To use a Command object to execute a nonquery command

This procedure is used to execute INSERT, UPDATE, and DELETE commands as well as DDL commands such as CREATE TABLE and ALTER.

1. Set the CommandType property to StoredProcedure if specifying a stored procedure or Text if specifying a SQL string.

2. Set the CommandText property to the name of the stored procedure or the desired SQL string, as appropriate.

3. Specify any parameters and their appropriate values.

4. Call the Command.ExecuteNonQuery method. An example of this method ​follows:

1. ' This command is identical whether you are using the OleDbCommand

2. ' class or the SqlCommand class

3. myCommand.ExecuteNonQuery()

To use a Command object to return a single value

1. Set the CommandType property to StoredProcedure if specifying a stored procedure or Text if specifying a SQL string.

2. Set the CommandText property to the name of the stored procedure or the desired SQL string, as appropriate.

3. Specify any parameters and their appropriate values.

4. Call the Command.ExecuteScalar method. An example of this method follows:

' This command is identical whether you are using the OleDbCommand

' class or the SqlCommand class

Dim O As Object

O = myCommand.ExecuteScalar()

Using DataReaders

Executing nonquery or scalar-returning commands with a Command object is straightforward. To use a Command object with queries that return more than one value, however, you must use the ExecuteReader method to return a DataReader.

A DataReader is a lightweight object that provides read-only, forward-only data in a fast and efficient manner. To expose the values directly to program logic, you can use the DataReader to iterate through the records returned in a result set. Using a DataReader rather than a DataAdapter to fill a DataSet is more efficient, but it is also more limited. This is because the data provided is read-only; no updates can be performed with a DataReader. Also, the data access is forward-only; once a record has been read, it cannot be returned to. Additionally, a DataReader is a connected data-access structure requiring exclusive use of an active connection for the entire time it is in existence.

Creating a DataReader

A DataReader cannot be created explicitly. Rather, you must instantiate a Data​Reader by making a call to a Command object’s ExecuteReader command. Like other members of the different data providers, each DataProvider has its own class of DataReader. An OleDbCommand object returns an OleDbDataReader, while a SqlCommand object returns a SqlDataReader. For example:

' This example assumes the existence of an OleDbCommand object

' and a SqlCommand object named myOleDbCommand and mySqlCommand

' respectively

Dim myOleDbReader As System.Data.OleDb.OleDbDataReader

Dim mySqlReader As System.Data.SqlClient.SqlDataReader

' This call creates a new OleDbReader and assigns it to the variable

myOleDbReader = myOleDbCommand.ExecuteReader()

' This call creates a new SqlReader and assigns it to the variable

mySqlReader = mySqlCommand.ExecuteReader()

When a Command object’s ExecuteReader method is called, the Command object executes the command it represents and builds a DataReader of the appropriate type, which can be assigned to a reference variable.

Simple Data Access with the DataReader

Once you have a reference to a DataReader, you can iterate through the records and read them into memory as needed. When the DataReader is first returned, it is positioned before the first record of the result set. To make the first record available, you must call the Read method. If a record is available, the Read method advances the DataReader to the next record and returns True (true). If a record is not available, the Read method returns False (false). Thus, it is possible to use the Read method to iterate through the records with a While (while) loop, as shown in the following code example:

While myDataReader.Read()

 ' Code here will be executed once for each record returned in

 ' the result set

End While

When a record is being read by the DataReader, the values in the individual columns are exposed through the indexer or default property as an array of objects that can be accessed by their ordinal values or by the column name. For example:

While myDataReader.Read()

 Dim myObject As Object = myDataReader(3)

 Dim myOtherObject As Object = myDataReader("CustomerID")

End While

All of the values exposed by the DataReader in this manner are exposed as objects, although you can retrieve strongly typed data from the DataReader as well. This process is discussed later in this lesson.

After you have finished reading data with the DataReader, you must call the Close method to close the DataReader. If Close is not called, the DataReader will maintain exclusive access to the active connection and no other object can use it. You also can set the CommandBehavior property to CloseConnection when you call ExecuteReader. This causes the connection to close automatically, eliminating the need to explicitly call Close.

myDataReader.Close()

Accessing Columns of Data with a DataReader

The following sample code demonstrates how to iterate through the records returned in a result set and write one column of data to the console window. This example assumes the existence of an OleDbCommand object named myOleDbCommand with its Connection property set to a connection named myConnection.

' Opens the active connection

myConnection.Open()

' Creates a DataReader and assigns it to myReader

Dim myReader As System.Data.OleDb.OleDbDataReader = _

 myOleDbCommand.ExecuteReader()

' Calls Read before attempting to read data

While myReader.Read()

 ' You can access the columns either by column name or by ordinal

 ' number

 Console.WriteLine(myReader("Customers").ToString())

End While

' Always close the DataReader when you are done with it

myReader.Close()

' And close the connection if not being used further

myConnection.Close()

To access data with a DataReader

1. Call your Command object’s ExecuteReader method and assign the returned DataReader to an appropriately typed variable.

2. Iterate through the result set within a While (while) loop. You should perform any operations with the data while inside this loop. You must call the Data​Reader object’s Read method before using the data.

3. When finished, call the DataReader object’s Close method to release the ​connection.

Retrieving Typed Data Using a DataReader

Although the data exposed by a DataReader is typed as objects, the DataReader also exposes methods to retrieve data contained in a result set. These methods are named Get, along with the name of the type to be retrieved. For example, the method to retrieve a Boolean value is GetBoolean. If you know the type of data in a given column, you can use Get methods to return strongly typed data from that column. For example:

Dim myBoolean As Boolean

myBoolean = myDataReader.GetBoolean(3)

When using these methods, you must use the column’s ordinal number; you cannot use the column name. If you only know the column name, you can look up the ordinal number with the GetOrdinal method, as follows:

Dim CustomerID As Integer

Dim Customer As String

' Looks up the ordinal number for the column named 'CustomerID'

CustomerID = myDataReader.GetOrdinal("CustomerID")

' Retrieves a string from that field and assigns it to Customer

Customer = myDataReader.GetString(CustomerID)

To retrieve typed data using a DataReader

1. If necessary, look up the column’s ordinal number by calling the GetOrdinal method on the column name.

2. Call the appropriate Get method of the DataReader, specifying the ordinal number of the column to return.

3. Summary

· The Connection object connects to a database. You can create a Connection object by dragging a connection from the Server Explorer to the designer or by creating a new Connection object.

· The Command object represents a SQL command or a reference to a stored procedure in the database. Three methods for executing database commands are shared by the OleDbCommand object and the SqlCommand object. They are:

· ExecuteNonQuery
· ExecuteScalar
· ExecuteReader
· Parameters represent values required for the execution of commands represented by Command objects. The OleDbCommand object uses a question mark (?) as a placeholder for parameters in SQL statements, whereas the SqlCommand object uses named parameters.

· DataReader objects provide forward-only, read-only, connected data access and require the exclusive use of a data connection.

· DataReader objects expose methods that allow retrieval of strongly typed data.

· DataAdapter objects facilitate interaction between a database and a DataSet by managing the commands required to fill the DataSet from the database and update the database from the DataSet.

Object:STUDENT

DATA

 Name

 Date-of-birth

 Marks

FUNCTIONS

 Total

 Average

 Display

	STUDENT

Total

Average

Display

Bird

Attributes

Feathers

Lay eggs

Flying Bird

Attributes

…………

…………

Non-flying Bird

Attributes

………………

………………..

Robin

Attributes

……………………

…………..

Swallow

Attributes

…………………….

Penguin

Attributes

……….

……….

Kiwi

Attributes

………..

…………

